Home
Class 12
MATHS
Conisder x = 4 tan^(-1)((1)/(5)),y = tan...

Conisder x = 4 `tan^(-1)((1)/(5)),y = tan^(-1)((1)/(70))and z = tan^(-1)((1)/(99))`.
What is x equal to ?

A

`tan^(-1)((60)/(119))`

B

`tan^(-1)((120)/(119))`

C

`tan^(-1)((90)/(169))`

D

`tan^(-1)((170)/(169))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) where \( x = 4 \tan^{-1}\left(\frac{1}{5}\right) \), we will use the properties of the inverse tangent function. ### Step-by-Step Solution: 1. **Start with the given expression:** \[ x = 4 \tan^{-1}\left(\frac{1}{5}\right) \] 2. **Use the double angle formula for tangent:** The double angle formula for tangent states that: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Here, let \( \theta = \tan^{-1}\left(\frac{1}{5}\right) \), so \( \tan(\theta) = \frac{1}{5} \). 3. **Calculate \( \tan(2\theta) \):** Using the formula: \[ \tan(2\theta) = \frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2} = \frac{\frac{2}{5}}{1 - \frac{1}{25}} = \frac{\frac{2}{5}}{\frac{24}{25}} = \frac{2 \cdot 25}{5 \cdot 24} = \frac{10}{24} = \frac{5}{12} \] Therefore, we have: \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{5}{12}\right) \] 4. **Now calculate \( x \) as \( 2 \tan^{-1}\left(\frac{5}{12}\right) \):** \[ x = 2 \tan^{-1}\left(\frac{5}{12}\right) \] 5. **Apply the double angle formula again:** Now, we can apply the double angle formula again: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] where \( \theta = \tan^{-1}\left(\frac{5}{12}\right) \). 6. **Calculate \( \tan(2\theta) \):** \[ \tan(2\theta) = \frac{2 \cdot \frac{5}{12}}{1 - \left(\frac{5}{12}\right)^2} = \frac{\frac{10}{12}}{1 - \frac{25}{144}} = \frac{\frac{10}{12}}{\frac{119}{144}} = \frac{10 \cdot 144}{12 \cdot 119} = \frac{120}{119} \] 7. **Final result:** Thus, we find: \[ x = \tan^{-1}\left(\frac{120}{119}\right) \] ### Conclusion: The value of \( x \) is: \[ x = \tan^{-1}\left(\frac{120}{119}\right) \]

To find the value of \( x \) where \( x = 4 \tan^{-1}\left(\frac{1}{5}\right) \), we will use the properties of the inverse tangent function. ### Step-by-Step Solution: 1. **Start with the given expression:** \[ x = 4 \tan^{-1}\left(\frac{1}{5}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY AND PROBABILIYT DISTRIBUTION

    NDA PREVIOUS YEARS|Exercise Multiple Choice Question|213 Videos
  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos

Similar Questions

Explore conceptually related problems

Conisder x = 4 tan^(-1)((1)/(5)),y = tan^(-1)((1)/(70))and z = tan^(-1)((1)/(99)) . What is x - y equal to ?

Conisder x = 4 tan^(-1)((1)/(5)),y = tan^(-1)((1)/(70))and z = tan^(-1)((1)/(99)) . What is x - y + z equal to ?

x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) What is x equal to?

4tan^(-1)((1)/(5))=tan^(-1)((1)/(70))+tan^(-1)((1)/(99))+(pi )/(4)

4tan^(-1)((1)/(5))-tan^(-1)((1)/(70))+tan^(-1)((1)/(99))=pi/4

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

Find the value of 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)

What is tan^(-1)((1)/(4))+tan^(-1)((3)/(5)) equal to ?

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to

NDA PREVIOUS YEARS-PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION-MCQ
  1. If in triangle ABC, (a=(1+sqrt(3))c m ,b=2c m ,a n d/C=60^0 , then fin...

    Text Solution

    |

  2. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  3. Conisder x = 4 tan^(-1)((1)/(5)),y = tan^(-1)((1)/(70))and z = tan^(-1...

    Text Solution

    |

  4. Conisder x = 4 tan^(-1)((1)/(5)),y = tan^(-1)((1)/(70))and z = tan^(-1...

    Text Solution

    |

  5. Conisder x = 4 tan^(-1)((1)/(5)),y = tan^(-1)((1)/(70))and z = tan^(-1...

    Text Solution

    |

  6. The value of tan (2 "tan"^(-1)(1)/(5)-(pi)/(4)) is

    Text Solution

    |

  7. Consider the following statements : 1. sin^(-1)\ 4/5 + sin^(-1)\ 3/5...

    Text Solution

    |

  8. If a, b and c are the sides of a triangle ABC, then a^(1//p) + b^(1//p...

    Text Solution

    |

  9. Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"...

    Text Solution

    |

  10. Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"...

    Text Solution

    |

  11. Consider the following statements : 1. There exists theta in(-(pi)/(...

    Text Solution

    |

  12. Consider the following statements : 1. tan^(-1) x + tan^(-1)((1)/(x)...

    Text Solution

    |

  13. Consider the following statement : 1. If ABC is an equilateral trian...

    Text Solution

    |

  14. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  15. Consider the following for triangle ABC : 1. sin((B+C)/(2))=cos((A)/...

    Text Solution

    |

  16. The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

    Text Solution

    |

  17. In a triangle ABC, a-2b +c=0.The value of cot(A/2)cot(C/2) is

    Text Solution

    |

  18. In DeltaABC If, (sin^2A+sin^2B+sin^2C)/(cos^2A+cos^2B+cos^2C)=2 Then t...

    Text Solution

    |

  19. The principal value of sin^(-1) x lies in the interval

    Text Solution

    |

  20. In a triangle ABC if a = 2, b = 3 and sin A = (2)/(3), then what is an...

    Text Solution

    |