Home
Class 12
MATHS
Consider a triangle ABC in which cos A +...

Consider a triangle ABC in which `cos A + cos B + cos C = sqrt(3) "sin"(pi)/(3)`
What is the value of `cos((A+B)/(2))cos((B+C)/(2))cos((C+A)/(2))`?

A

`(1)/(4)`

B

`(1)/(2)`

C

`(1)/(16)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation for triangle ABC: \[ \cos A + \cos B + \cos C = \sqrt{3} \sin\left(\frac{\pi}{3}\right) \] Since \(\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\), we can rewrite the equation as: \[ \cos A + \cos B + \cos C = \sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{3}{2} \] Next, we will use the identity for the sum of cosines in a triangle. The sum of cosines can be expressed in terms of the angles of the triangle: \[ \cos A + \cos B + \cos C = 1 + \frac{r}{R} \] where \(r\) is the inradius and \(R\) is the circumradius of triangle ABC. Setting this equal to \(\frac{3}{2}\): \[ 1 + \frac{r}{R} = \frac{3}{2} \] This leads to: \[ \frac{r}{R} = \frac{3}{2} - 1 = \frac{1}{2} \] From this, we can conclude that: \[ r = \frac{1}{2} R \] Next, we need to find the value of: \[ \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right) \] Using the identity for the cosine of half-angles, we can express each cosine term in terms of the angles of the triangle. Recall that in a triangle \(A + B + C = \pi\), so: \[ \frac{A+B}{2} = \frac{\pi - C}{2} = \frac{\pi}{2} - \frac{C}{2} \] Thus: \[ \cos\left(\frac{A+B}{2}\right) = \sin\left(\frac{C}{2}\right) \] Similarly, we find: \[ \cos\left(\frac{B+C}{2}\right) = \sin\left(\frac{A}{2}\right) \] \[ \cos\left(\frac{C+A}{2}\right) = \sin\left(\frac{B}{2}\right) \] Therefore, we can rewrite the expression we need to evaluate as: \[ \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right) = \sin\left(\frac{C}{2}\right) \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \] Using the identity for the product of sines, we can relate this to the area of the triangle or the circumradius, but for simplicity, we can use the known result for a triangle where \( \cos A + \cos B + \cos C = \frac{3}{2} \). In such a case, it is known that: \[ \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right) = \frac{1}{8} \] Thus, we have: \[ \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right) = \frac{1}{8} \] So the final answer is: \[ \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right) = \frac{1}{8} \]

To solve the problem, we start with the given equation for triangle ABC: \[ \cos A + \cos B + \cos C = \sqrt{3} \sin\left(\frac{\pi}{3}\right) \] Since \(\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\), we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY AND PROBABILIYT DISTRIBUTION

    NDA PREVIOUS YEARS|Exercise Multiple Choice Question|213 Videos
  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos

Similar Questions

Explore conceptually related problems

Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"(pi)/(3) What is the value of "sin"(A)/(2)"sin"(B)/(2)"sin"(C)/(2) ?

Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) What is the value of Cos((A+B)/(2))Cos((B+C)/(2))Cos((C+A)/(2))

In a triangle ABC, a cos A+b cos B+ c cos C=

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

In a triangle ABC ,cos A + cos B + cos C = 3/2 , then the triangle ,is

In any triangle ABC,show that: 2a cos((B)/(2))cos((C)/(2))=(a+b+c)sin((A)/(2))

In triangle ABC,cos A+2cos B+cos C=2, then-

If in a triangle ABC, 2 (cos A)/(a) +(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/(ca) then the value of the angle A is

NDA PREVIOUS YEARS-PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION-MCQ
  1. If a, b and c are the sides of a triangle ABC, then a^(1//p) + b^(1//p...

    Text Solution

    |

  2. Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"...

    Text Solution

    |

  3. Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"...

    Text Solution

    |

  4. Consider the following statements : 1. There exists theta in(-(pi)/(...

    Text Solution

    |

  5. Consider the following statements : 1. tan^(-1) x + tan^(-1)((1)/(x)...

    Text Solution

    |

  6. Consider the following statement : 1. If ABC is an equilateral trian...

    Text Solution

    |

  7. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  8. Consider the following for triangle ABC : 1. sin((B+C)/(2))=cos((A)/...

    Text Solution

    |

  9. The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

    Text Solution

    |

  10. In a triangle ABC, a-2b +c=0.The value of cot(A/2)cot(C/2) is

    Text Solution

    |

  11. In DeltaABC If, (sin^2A+sin^2B+sin^2C)/(cos^2A+cos^2B+cos^2C)=2 Then t...

    Text Solution

    |

  12. The principal value of sin^(-1) x lies in the interval

    Text Solution

    |

  13. In a triangle ABC if a = 2, b = 3 and sin A = (2)/(3), then what is an...

    Text Solution

    |

  14. The principle value of sin ^(-1)(sin ""(2pi)/(3)) is

    Text Solution

    |

  15. If x, x - y and x + y are the angles of a triangle (not an equilateral...

    Text Solution

    |

  16. ABC is a triangle inscribed in a circle with centre O. Let alpha = ang...

    Text Solution

    |

  17. What is tan^(-1)((1)/(4))+tan^(-1)((3)/(5)) equal to ?

    Text Solution

    |

  18. If A + B + C = 180^(@), then what is sin 2A - sin 2N - sin 2C equal to...

    Text Solution

    |

  19. Consider the following values of x : 1. 8 2. -4 3. (1)/(6) 4. ...

    Text Solution

    |

  20. Let the slope of the curve y = cos^(-1) (sin x) be tan theta : Then th...

    Text Solution

    |