Home
Class 12
MATHS
Consider the following statement : 1. ...

Consider the following statement :
1. If ABC is an equilateral triangle, then 3 tan(A + B) tan C = 1.
2. If ABC is a triangle in which `A = 78^(@), B = 66^(@)`, then `tan((A)/(2)+C) lt tan A`
3. If ABC is any triangle, then `tan((A+B)/(2))sin((C)/(2)) lt cos((C)/(2))`
Which of the above statements is/are correct?

A

1 only

B

2 only

C

1 and 2

D

2 and 3

Text Solution

AI Generated Solution

The correct Answer is:
To determine the correctness of the given statements about triangles, we will analyze each statement step by step. ### Statement 1: If ABC is an equilateral triangle, then \(3 \tan(A + B) \tan C = 1\). 1. **Understanding Equilateral Triangle**: In an equilateral triangle, all angles are equal. Thus, \(A = B = C = 60^\circ\). 2. **Calculate \(A + B\)**: \[ A + B = 60^\circ + 60^\circ = 120^\circ \] 3. **Calculate \(\tan(A + B)\)**: \[ \tan(120^\circ) = \tan(180^\circ - 60^\circ) = -\tan(60^\circ) = -\sqrt{3} \] 4. **Calculate \(\tan C\)**: \[ \tan C = \tan(60^\circ) = \sqrt{3} \] 5. **Substituting into the equation**: \[ 3 \tan(A + B) \tan C = 3 \cdot (-\sqrt{3}) \cdot (\sqrt{3}) = 3 \cdot (-3) = -9 \] 6. **Conclusion**: Since \(-9 \neq 1\), the first statement is incorrect. ### Statement 2: If \(A = 78^\circ\) and \(B = 66^\circ\), then \(\tan\left(\frac{A}{2} + C\right) < \tan A\). 1. **Calculate angle \(C\)**: \[ C = 180^\circ - A - B = 180^\circ - 78^\circ - 66^\circ = 36^\circ \] 2. **Calculate \(\frac{A}{2}\)**: \[ \frac{A}{2} = \frac{78^\circ}{2} = 39^\circ \] 3. **Calculate \(\tan\left(\frac{A}{2} + C\right)\)**: \[ \tan\left(39^\circ + 36^\circ\right) = \tan(75^\circ) \] 4. **Calculate \(\tan A\)**: \[ \tan A = \tan(78^\circ) \] 5. **Comparison**: Since \(75^\circ < 78^\circ\), it follows that \(\tan(75^\circ) < \tan(78^\circ)\). 6. **Conclusion**: The second statement is correct. ### Statement 3: If ABC is any triangle, then \(\tan\left(\frac{A + B}{2}\right) \sin\left(\frac{C}{2}\right) < \cos\left(\frac{C}{2}\right)\). 1. **Using the property of triangle**: Since \(A + B + C = 180^\circ\), we have \(A + B = 180^\circ - C\). 2. **Calculate \(\frac{A + B}{2}\)**: \[ \frac{A + B}{2} = \frac{180^\circ - C}{2} = 90^\circ - \frac{C}{2} \] 3. **Calculate \(\tan\left(\frac{A + B}{2}\right)\)**: \[ \tan\left(90^\circ - \frac{C}{2}\right) = \cot\left(\frac{C}{2}\right) \] 4. **Substituting into the inequality**: \[ \cot\left(\frac{C}{2}\right) \sin\left(\frac{C}{2}\right) < \cos\left(\frac{C}{2}\right) \] 5. **Using the identity**: \(\cot(x) = \frac{\cos(x)}{\sin(x)}\), we rewrite the left side: \[ \frac{\cos\left(\frac{C}{2}\right)}{\sin\left(\frac{C}{2}\right)} \sin\left(\frac{C}{2}\right) = \cos\left(\frac{C}{2}\right) \] 6. **Conclusion**: The inequality holds true, hence the third statement is correct. ### Final Conclusion: - Statement 1: Incorrect - Statement 2: Correct - Statement 3: Correct Thus, the correct statements are 2 and 3.

To determine the correctness of the given statements about triangles, we will analyze each statement step by step. ### Statement 1: If ABC is an equilateral triangle, then \(3 \tan(A + B) \tan C = 1\). 1. **Understanding Equilateral Triangle**: In an equilateral triangle, all angles are equal. Thus, \(A = B = C = 60^\circ\). 2. **Calculate \(A + B\)**: \[ ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY AND PROBABILIYT DISTRIBUTION

    NDA PREVIOUS YEARS|Exercise Multiple Choice Question|213 Videos
  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos

Similar Questions

Explore conceptually related problems

in triangle ABC,tan A+tan B+tan C=

In Delta ABC,quad if b+c=3a then tan((B)/(2))tan((C)/(2))=

Show that in any triangle ABC,(a+b+c)(tan((A)/(2))+tan((B)/(2)))=2c cot((C)/(2))

In any triangle ABC,1-tan((A)/(2))tan((B)/(2))=

In a triangle ABC if tan C lt 0 then :

If in a triangle ABC, b + c = 3a, then tan (B/2)tan(C/2) is equal to

In any triangle ABC, prove that: (b-c)/(b+c)=(tan((b-C)/(2)))/(tan((B+C)/(2)))

In a triangle ABC,a=3b and |A-B|= 60^(0) then tan((C)/(2))=

In a Delta ABC, if a=18,b=24,c=30, find :tan((A)/(2)),tan((B)/(2)),tan((C)/(2))

NDA PREVIOUS YEARS-PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION-MCQ
  1. Consider the following statements : 1. There exists theta in(-(pi)/(...

    Text Solution

    |

  2. Consider the following statements : 1. tan^(-1) x + tan^(-1)((1)/(x)...

    Text Solution

    |

  3. Consider the following statement : 1. If ABC is an equilateral trian...

    Text Solution

    |

  4. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  5. Consider the following for triangle ABC : 1. sin((B+C)/(2))=cos((A)/...

    Text Solution

    |

  6. The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

    Text Solution

    |

  7. In a triangle ABC, a-2b +c=0.The value of cot(A/2)cot(C/2) is

    Text Solution

    |

  8. In DeltaABC If, (sin^2A+sin^2B+sin^2C)/(cos^2A+cos^2B+cos^2C)=2 Then t...

    Text Solution

    |

  9. The principal value of sin^(-1) x lies in the interval

    Text Solution

    |

  10. In a triangle ABC if a = 2, b = 3 and sin A = (2)/(3), then what is an...

    Text Solution

    |

  11. The principle value of sin ^(-1)(sin ""(2pi)/(3)) is

    Text Solution

    |

  12. If x, x - y and x + y are the angles of a triangle (not an equilateral...

    Text Solution

    |

  13. ABC is a triangle inscribed in a circle with centre O. Let alpha = ang...

    Text Solution

    |

  14. What is tan^(-1)((1)/(4))+tan^(-1)((3)/(5)) equal to ?

    Text Solution

    |

  15. If A + B + C = 180^(@), then what is sin 2A - sin 2N - sin 2C equal to...

    Text Solution

    |

  16. Consider the following values of x : 1. 8 2. -4 3. (1)/(6) 4. ...

    Text Solution

    |

  17. Let the slope of the curve y = cos^(-1) (sin x) be tan theta : Then th...

    Text Solution

    |

  18. What is the value of "sin"^(-1)(4)/(5)+"sec"^(-1)(5)/(4)-(pi)/(2)?

    Text Solution

    |

  19. if sin^-1((2p)/(1+p^2))-cos^-1((1-q^2)/(1+q^2))=tan^((2x)/(1-x^2)) pr...

    Text Solution

    |

  20. If in triangle the angles be to the one another as 1:2:3 , prove that ...

    Text Solution

    |