Home
Class 12
MATHS
Consider the following for triangle ABC ...

Consider the following for triangle ABC :
1. `sin((B+C)/(2))=cos((A)/(2))`
2. `tan((B+C)/(2))=cot((A)/(2))`
3. sin (B + C) = cos A
4. tan(B + C) = -cot A
Which of the above are correct ?

A

1 and 3

B

1 and 2

C

1 and 4

D

2 and 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the statements regarding triangle ABC are correct, we will analyze each statement step by step. ### Step 1: Analyze the first statement **Statement 1:** \( \sin\left(\frac{B+C}{2}\right) = \cos\left(\frac{A}{2}\right) \) From the triangle property, we know that: \[ A + B + C = 180^\circ \quad \Rightarrow \quad B + C = 180^\circ - A \] Thus, we can express \( B + C \) in terms of \( A \): \[ \frac{B+C}{2} = \frac{180^\circ - A}{2} = 90^\circ - \frac{A}{2} \] Now, using the sine function: \[ \sin\left(\frac{B+C}{2}\right) = \sin\left(90^\circ - \frac{A}{2}\right) = \cos\left(\frac{A}{2}\right) \] This shows that Statement 1 is **correct**. ### Step 2: Analyze the second statement **Statement 2:** \( \tan\left(\frac{B+C}{2}\right) = \cot\left(\frac{A}{2}\right) \) Using the same expression for \( \frac{B+C}{2} \): \[ \tan\left(\frac{B+C}{2}\right) = \tan\left(90^\circ - \frac{A}{2}\right) = \cot\left(\frac{A}{2}\right) \] This shows that Statement 2 is also **correct**. ### Step 3: Analyze the third statement **Statement 3:** \( \sin(B+C) = \cos A \) We know that: \[ B + C = 180^\circ - A \quad \Rightarrow \quad \sin(B+C) = \sin(180^\circ - A) = \sin A \] Since \( \sin A \) is not equal to \( \cos A \) in general, Statement 3 is **incorrect**. ### Step 4: Analyze the fourth statement **Statement 4:** \( \tan(B+C) = -\cot A \) Using the same expression for \( B + C \): \[ \tan(B+C) = \tan(180^\circ - A) = -\tan A \] And since \( \cot A = \frac{1}{\tan A} \), we have: \[ -\cot A = -\frac{1}{\tan A} \] Thus, Statement 4 is also **incorrect**. ### Conclusion The correct statements are: - Statement 1: Correct - Statement 2: Correct - Statement 3: Incorrect - Statement 4: Incorrect Therefore, the answer is that **only statements 1 and 2 are correct**.

To determine which of the statements regarding triangle ABC are correct, we will analyze each statement step by step. ### Step 1: Analyze the first statement **Statement 1:** \( \sin\left(\frac{B+C}{2}\right) = \cos\left(\frac{A}{2}\right) \) From the triangle property, we know that: \[ A + B + C = 180^\circ \quad \Rightarrow \quad B + C = 180^\circ - A ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY AND PROBABILIYT DISTRIBUTION

    NDA PREVIOUS YEARS|Exercise Multiple Choice Question|213 Videos
  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos

Similar Questions

Explore conceptually related problems

Consider the following for triangle ABC I. Sin((B+C)/(2))=Cos((A)/(2)) II. tan((B+C)/(2))=Cot((A)/(2)) III. Sin (b+c) = Cos A IV. tan(B+C)=-CotA Which of the above ar correct?

cot ((A)/(2))-tan((A)/(2))= A) 2 sin A B) 2 cos A C) 2 tan A D) 2 cot A

Which of the following is true in a triangle ABC?(1)(b+c)sin((B_(C))/(2))=2a cos((A)/(2))(2+c)cos((A)/(2))=2a sin((B-C)/(2))

In a triangle ABC, prove that (a)cos(A+B)+cos C=0(b)tan((A+B)/(2))=cot((C)/(2))

In a Delta ABC, prove that tan((A+B)/(2))=cot((c)/(2))

Show that in any triangle ABC,(a+b+c)(tan((A)/(2))+tan((B)/(2)))=2c cot((C)/(2))

Delta ABC;(b-c)cot((A)/(2))+(c-a)cot((B)/(2))+(a-b)cot((C)/(2))

If A,B,C are the interior angles of a triangle ABC, prove that tan((C+A)/(2))=(cot B)/(2)( ii) sin((B+C)/(2))=(cos A)/(2)

In any Delta ABC, prove that cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=(a+b+c)/(b+c-a)cot((A)/(2))

In any triangle ABC,prove that: (i) "sin"(A+B)="sin"C (ii) cos((A+B)/(2))="sin"(C )/(2) (iii) "tan"((B+C-A)/(2))=cotA .

NDA PREVIOUS YEARS-PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION-MCQ
  1. Consider the following statements : 1. tan^(-1) x + tan^(-1)((1)/(x)...

    Text Solution

    |

  2. Consider the following statement : 1. If ABC is an equilateral trian...

    Text Solution

    |

  3. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  4. Consider the following for triangle ABC : 1. sin((B+C)/(2))=cos((A)/...

    Text Solution

    |

  5. The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

    Text Solution

    |

  6. In a triangle ABC, a-2b +c=0.The value of cot(A/2)cot(C/2) is

    Text Solution

    |

  7. In DeltaABC If, (sin^2A+sin^2B+sin^2C)/(cos^2A+cos^2B+cos^2C)=2 Then t...

    Text Solution

    |

  8. The principal value of sin^(-1) x lies in the interval

    Text Solution

    |

  9. In a triangle ABC if a = 2, b = 3 and sin A = (2)/(3), then what is an...

    Text Solution

    |

  10. The principle value of sin ^(-1)(sin ""(2pi)/(3)) is

    Text Solution

    |

  11. If x, x - y and x + y are the angles of a triangle (not an equilateral...

    Text Solution

    |

  12. ABC is a triangle inscribed in a circle with centre O. Let alpha = ang...

    Text Solution

    |

  13. What is tan^(-1)((1)/(4))+tan^(-1)((3)/(5)) equal to ?

    Text Solution

    |

  14. If A + B + C = 180^(@), then what is sin 2A - sin 2N - sin 2C equal to...

    Text Solution

    |

  15. Consider the following values of x : 1. 8 2. -4 3. (1)/(6) 4. ...

    Text Solution

    |

  16. Let the slope of the curve y = cos^(-1) (sin x) be tan theta : Then th...

    Text Solution

    |

  17. What is the value of "sin"^(-1)(4)/(5)+"sec"^(-1)(5)/(4)-(pi)/(2)?

    Text Solution

    |

  18. if sin^-1((2p)/(1+p^2))-cos^-1((1-q^2)/(1+q^2))=tan^((2x)/(1-x^2)) pr...

    Text Solution

    |

  19. If in triangle the angles be to the one another as 1:2:3 , prove that ...

    Text Solution

    |

  20. What is the derivative of sec^(2)(tan^(-1)x) with respect to x ?

    Text Solution

    |