Home
Class 10
MATHS
If cos(alpha + beta) =0, then sin (alpha...

If `cos(alpha + beta) =0`, then `sin (alpha- beta)=` ________

A

`cos beta`

B

`cos 2 beta`

C

`sin alpha`

D

`sin 2 alpha`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise ZEN ADDITIONAL QUESTIONS (VERY SHORT ANSWER (VSA) - QUESTIONS)|14 Videos
  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise ZEN ADDITIONAL QUESTIONS ( SHORT ANSWER (SA) TYPE - 1 - QUESTIONS)|12 Videos
  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise Exercise 11.4|18 Videos
  • AREA RELATED TO CIRCLES

    ZEN PUBLICATION|Exercise ADDITIONAL QUESTIONS (HIGHER ORDER THINKING SKILLS)|7 Videos

Similar Questions

Explore conceptually related problems

If "cot"(alpha+beta=0, then "sin"(alpha+2beta) can be

If sin(alpha + beta) = 1 , sin(alpha - beta) = 1/2 , then : tan(alpha + 2beta)tan(2alpha + beta) is equal to :

If cos(alpha - beta) = 1 and cos(alpha + beta) = 1/e , then the number of ordered pairs (alpha,beta) such that alpha,beta in [-pi,pi] is :

If alpha and beta be between 0 and (pi)/(2) and if cos (alpha+beta)=(12)/(13) and sin (alpha-beta)=(3)/(5), then sin 2 alpha is equal to

If cos (alpha+beta)=(4)/(5), sin (alpha-beta)=(5)/(13) and 0 lt alpha, beta lt (pi)/(2) then cos 2 alpha=

If cos (alpha+beta)=(4)/(5), sin (alpha-beta)=(5)/(13) and 0 lt alpha , beta lt(pi)/(4), then tan 2 alpha=

If alpha , beta are the roots of the equation : x^(2) + x sqrt(alpha) + beta = 0 , then the values of alpha and beta are :

cos (alpha+beta)=(3)/(5) and sin (alpha-beta)=(3)/(5) and 0 lt alpha, beta lt (pi)/(2) then sin 2 alpha=

If x= npi+(-1)^(n)alpha , n in I and x=npi+(-1)^(n)beta are the roots of 4 cos x -3 sec x =tan x , then 4(sin alpha + sin beta ) is

If cos alpha + 2 cos beta + 3 cos gamma = 0 , sin alpha + 2 sin beta + 3 sin gamma = 0 and alpha + beta + gamma = pi , then sin 3 alpha + 8 sin 3 beta + 27 sin 3 gamma =