Home
Class 10
MATHS
If x = r cos theta sin phi, y = r sin th...

If `x = r cos theta sin phi, y = r sin theta sin phi`, and `z= r cos phi`, prove that `x^(2)+y^(2) + z^(2)=r^(2)`.

Promotional Banner

Topper's Solved these Questions

  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise ZEN ADDITIONAL QUESTIONS ( LONG - ANSWER (LA) TYPE - QUESTIONS)|12 Videos
  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise ZEN ADDITIONAL QUESTIONS ( HOTS (HIGHER ORDER THINKING SKILLS) - QUESTIONS)|5 Videos
  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise ZEN ADDITIONAL QUESTIONS ( SHORT ANSWER (SA) TYPE - 1 - QUESTIONS)|12 Videos
  • AREA RELATED TO CIRCLES

    ZEN PUBLICATION|Exercise ADDITIONAL QUESTIONS (HIGHER ORDER THINKING SKILLS)|7 Videos

Similar Questions

Explore conceptually related problems

x = a cos theta, y = b sin theta .

If x = cos theta cos phi + sin theta sin phi cos psi , y = cos theta sin phi - sin theta cos phi cos psi and z = sin theta sin psi , then x^(2) + y^(2) + z^(2) equals :

If x = a (cos theta + theta sin theta), y = a(sin theta - theta cos theta) then (d^(2)y)/(dx^(2)) =

If x=r cos theta, y=r sin theta Prove that x^(2)+y^(2)=r^(2)

If (1 + tan theta) (1+ tan phi) = 2, then theta + phi =

If x = a(cos theta + theta sin theta), y = a (sin theta - theta cos theta), (dy)/(dx) =

x = cos theta - cos 2 theta, y = sin theta - sin 2 theta . then find dy/dx

If x+i y=(1)/(1+cos theta+i sin theta) then x^(2)

x = a (cos theta + theta sin theta), y = a (sin theta - theta cos theta) . then find dy/dx