Home
Class 11
PHYSICS
Vectors vecà and vecb include an angle ...

 Vectors `vecà and vecb` include an angle `theta` between them. If `(veca+vecb)` and `(veca-vecb)` respectively subtend angles `alpha and beta` with `veca`, then `(tan alpha+tan beta) ` is

A

`(("ab"sin theta))/((a^(2)+b^(2)cos^(2) theta))`

B

`(2"ab"sin theta)/((a^(2)-b^(2)cos^(2) theta))`

C

`(a^(2)sin^(2) theta)/((a^(2)+b^(2)cos^(2) theta))`

D

`((b^(2)sin^(2) theta))/((a^(2)-b^(2)cos^(2) theta))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \tan \alpha + \tan \beta \) where \( \alpha \) and \( \beta \) are the angles that the resultant vectors \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) make with vector \( \vec{a} \), respectively. ### Step-by-Step Solution: 1. **Understanding the Vectors**: - Let \( \vec{a} \) and \( \vec{b} \) be two vectors with an angle \( \theta \) between them. - The resultant vector \( \vec{R_1} = \vec{a} + \vec{b} \) makes an angle \( \alpha \) with \( \vec{a} \). - The resultant vector \( \vec{R_2} = \vec{a} - \vec{b} \) makes an angle \( \beta \) with \( \vec{a} \). 2. **Finding \( \tan \alpha \)**: - The tangent of angle \( \alpha \) can be expressed as: \[ \tan \alpha = \frac{|\vec{b}| \sin \theta}{|\vec{a}| + |\vec{b}| \cos \theta} \] - Here, \( |\vec{b}| \sin \theta \) is the perpendicular height from \( \vec{b} \) to the resultant \( \vec{R_1} \), and \( |\vec{a}| + |\vec{b}| \cos \theta \) is the base. 3. **Finding \( \tan \beta \)**: - Similarly, for \( \tan \beta \): \[ \tan \beta = \frac{|\vec{b}| \sin \theta}{|\vec{a}| - |\vec{b}| \cos \theta} \] - Here, \( |\vec{b}| \sin \theta \) is the perpendicular height from \( -\vec{b} \) to the resultant \( \vec{R_2} \), and \( |\vec{a}| - |\vec{b}| \cos \theta \) is the base. 4. **Adding \( \tan \alpha \) and \( \tan \beta \)**: - Now, we can add \( \tan \alpha \) and \( \tan \beta \): \[ \tan \alpha + \tan \beta = \frac{|\vec{b}| \sin \theta}{|\vec{a}| + |\vec{b}| \cos \theta} + \frac{|\vec{b}| \sin \theta}{|\vec{a}| - |\vec{b}| \cos \theta} \] - This can be simplified using a common denominator: \[ = \frac{|\vec{b}| \sin \theta (|\vec{a}| - |\vec{b}| \cos \theta) + |\vec{b}| \sin \theta (|\vec{a}| + |\vec{b}| \cos \theta)}{(|\vec{a}| + |\vec{b}| \cos \theta)(|\vec{a}| - |\vec{b}| \cos \theta)} \] - Simplifying the numerator: \[ = \frac{2 |\vec{b}| |\vec{a}| \sin \theta}{|\vec{a}|^2 - |\vec{b}|^2 \cos^2 \theta} \] 5. **Final Result**: - Thus, we arrive at the final expression: \[ \tan \alpha + \tan \beta = \frac{2 |\vec{a}| |\vec{b}| \sin \theta}{|\vec{a}|^2 - |\vec{b}|^2 \cos^2 \theta} \] ### Conclusion: The value of \( \tan \alpha + \tan \beta \) is given by: \[ \frac{2 |\vec{a}| |\vec{b}| \sin \theta}{|\vec{a}|^2 - |\vec{b}|^2 \cos^2 \theta} \]

To solve the problem, we need to find the expression for \( \tan \alpha + \tan \beta \) where \( \alpha \) and \( \beta \) are the angles that the resultant vectors \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) make with vector \( \vec{a} \), respectively. ### Step-by-Step Solution: 1. **Understanding the Vectors**: - Let \( \vec{a} \) and \( \vec{b} \) be two vectors with an angle \( \theta \) between them. - The resultant vector \( \vec{R_1} = \vec{a} + \vec{b} \) makes an angle \( \alpha \) with \( \vec{a} \). - The resultant vector \( \vec{R_2} = \vec{a} - \vec{b} \) makes an angle \( \beta \) with \( \vec{a} \). ...
Promotional Banner

Topper's Solved these Questions

  • KINEMATICS

    MTG GUIDE|Exercise Topicwise Practice Questions (SCALAR AND VECTOR PRODUCTS OF VECTORS )|16 Videos
  • KINEMATICS

    MTG GUIDE|Exercise Topicwise Practice Questions (MOTION IN A PLANE )|23 Videos
  • KINEMATICS

    MTG GUIDE|Exercise Topicwise Practice Questions (RELATIVE VELOCITY)|15 Videos
  • GRAVITATION

    MTG GUIDE|Exercise AIPMT/NEET MCQS|32 Videos
  • LAWS OF MOTION

    MTG GUIDE|Exercise AIPMT /NEET (MCQ)|24 Videos

Similar Questions

Explore conceptually related problems

Vectors vecA and vecB include an angle theta between them. If (vecA + vecB) and (vecA- vecB) respectively subtend angles alpha and beta with vecA , then (tan alpha + tan beta) is

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

The angle between vector (vecA) and (vecA-vecB) is :

If veca and vecb are two vectors and angle between them is theta , then

What is the angle between veca and the resultant of veca+vecb and veca-vecb ?

Vectors veca and vec b are inclined at an angle theta = 120^@ . If |veca| = |vecb| = 2 , then [(veca + 3vecb) xx (3veca + vecb)]^2 is equal to

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

The resultant of vecA and vecB makes an angle alpha with vecA and vec beta with vecB , then -

If the resultant of vecA and vecB makes angle alpha with vecA and beta with vecB , then

MTG GUIDE-KINEMATICS -Topicwise Practice Questions (VECTORS)
  1. In the given figure, if vec(PQ) = vecA, vec(QR)=vecB and vec(RS) = vec...

    Text Solution

    |

  2. If vecA is a vector of magnitude 4 units due east. What is the magnit...

    Text Solution

    |

  3. If vectors vecP, vecQ and vecR have magnitudes 5, 12 and 13 units and ...

    Text Solution

    |

  4. Two forces are such that the sum of their magnitudes is 18N and their ...

    Text Solution

    |

  5. A boat man can row with a speed of 10 km h^(-1) in still water. If t...

    Text Solution

    |

  6. Two equal forces are acting at a point with an angle of 60° between th...

    Text Solution

    |

  7. The resultant of two forces (A + B) and (A - B) is a force sqrt(3A^(2)...

    Text Solution

    |

  8. A man can swim with a speed of 4 "km h"^(-1) in still water. How lonu...

    Text Solution

    |

  9. A boatman can row with a speed of 10 kmh^(-1) in still water. River f...

    Text Solution

    |

  10. Given vecA = hat i + hat j + hatk and vecB= - hati - hatj - hatk . (ve...

    Text Solution

    |

  11. The resultant of two vectors vecA and vecb is perpendicular to the vec...

    Text Solution

    |

  12. If vectors 2hati - 3hatj-5hatk and 2hati-3 hatj-ahatk are equal vecto...

    Text Solution

    |

  13. Two force in the ratio 1:2 act simultaneously on a particle. The resul...

    Text Solution

    |

  14. Resultant of two vectors vecA and vecB is of magnitude P, If vecB is r...

    Text Solution

    |

  15. Vectors vecà and vecb include an angle theta between them. If (veca+v...

    Text Solution

    |

  16. Two vectors vec A(1) and vec A(2) each of magnitude A are inclinded to...

    Text Solution

    |

  17. The maximum and minimum magnitude of the resultant of two given vector...

    Text Solution

    |

  18. Given : vecA =2 hati + 3hatj+hatk and vecB = 6 hati + 9hatj+3hatk w...

    Text Solution

    |

  19. If a body placed at the origin is acted upon by a force vecF=(hati+hat...

    Text Solution

    |

  20. With respect to a rectangular Cartesian co-ordinate system, three vect...

    Text Solution

    |