Home
Class 12
MATHS
If |x|lt1 and y=x-(x^(2))/(2)+(x^(3))/(3...

If `|x|lt1` and `y=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...`, then x =

A

`y+(y^(2))/(2!)+(y^(3))/(3!)+…oo`

B

`y-(y^(2))/(2)+(y^(3))/(3)-….oo`

C

`y-(y^(2))/(2!)+(y^(3))/(3!)+…oo`

D

`y-(y^(2))/(2!)+(y^(3))/(3!)- ….. oo`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - I(B) (HOME WORK)|9 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - II(A) (CLASS WORK)|40 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • MATHEMATICAL REASONING

    AAKASH SERIES|Exercise Practice Exercise|21 Videos

Similar Questions

Explore conceptually related problems

If |x|lt1 then (1)/(2)x^(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+....=

If |x| lt 1, y = x - x^(2) + x^(3) - x^(4) + ….. , the value of x in terms of y is

Assertion (A) : The coefficient of of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1

(x+3)/(2)-y=2,(x-3)/(2)+2y-4(1)/(2) then x=……..

If y = tan^(-1)((3x-x^(3))/(1-3x^(2))) + tan^(-1) ((4x-4x^(3))/(1-6x^(2) + 4x^(4))) then (dy)/(dx) =

Find Lt_(xtooo)((3x^(2)+1)/(4x^(2)-1))^((x^(3))/(1+x))

If f (x) = x-x ^(2) + x ^(3) - x ^(4) +….oo, |x| lt 1, then f '(x)=