Home
Class 12
MATHS
(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(...

`(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(3)(sqrt(3)-1)^(3)+….oo`

A

`log(3+sqrt(2))`

B

`log2`

C

0

D

`log(2+sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - I(B) (HOME WORK)|9 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - II(A) (CLASS WORK)|40 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • MATHEMATICAL REASONING

    AAKASH SERIES|Exercise Practice Exercise|21 Videos

Similar Questions

Explore conceptually related problems

((1)/(2)+sqrt(3)/(2)i)^(6)

sin^(-1)((sqrt(3))/2)-tan^(-1)(-sqrt(3))=

Find the conine of the angle between the lines whose direction cosines are ((1)/(sqrt(3)),(1)/(sqrt(3)),(1)/(sqrt(3)))and((1)/(sqrt(2)),(1)/(sqrt(2)),0) .

The angle between the two lines whose direction cosines are ((sqrt(3))/(4),(1)/(4),(sqrt(3))/(2))and((sqrt(3))/(4),(1)/(4),-(sqrt(3))/(2))

Simplify (1)/(7+4sqrt(3))+(1)/(2+sqrt(5))

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-3^(2)))+....+1/n)=

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+....+(1)/(sqrt(3n^(2))))=

sin^(-1)(-1/2)=tan^(-1)((-1//2)/(sqrt(1-1/4)))=tan^(-1)((-1)/(sqrt(3)))

sin ^(-1) (sqrt(3))/(2) + sin ^(-1) sqrt(2/3)=