Home
Class 12
MATHS
If alpha, beta are the roots of x^(2)-px...

If `alpha, beta` are the roots of `x^(2)-px+q=0` then
`(alpha+beta)x-(alpha^(2)+beta^(2))(x^(2))/(2)+(alpha^(3)+beta^(3))(x^(3))/(3)-….oo=`

A

`log(1+px+qx^(2))`

B

`log(1-px+qx^(2))`

C

`log(1+px-qx^(2))`

D

`log(1-px-qx^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - II(B) (HOME WORK)|30 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - I(B) (HOME WORK)|9 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • MATHEMATICAL REASONING

    AAKASH SERIES|Exercise Practice Exercise|21 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^2-px+q=0 then alpha^3+beta^3=….

IF alpha , beta are the roots of x^(2)-x+2=0 then alpha ^ 2 beta + alpha beta ^2 =

If alpha, beta are the rootsof 6x^(2)-4sqrt2 x-3=0 , then alpha^(2)beta+alpha beta^(2) is

If alpha , beta are the roots of 3x ^2 -5x+7=0 then alpha ^3 + beta ^3=

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

"If" alpha , beta "are the roots of" x^(2) - px + q = 0 "then" alpha^(3) + beta^(3) =

"If" alpha and beta are the roots of x^(2) - 2x + 3 = 0 "then" alpha^(2) beta^(2) =

If alpha and beta are the roots of x^2-2x+3=0 then alpha^2beta+ beta^2 alpha =….

If alpha , beta , gamma are the roots of 2x^3 -2x -1=0 the sum ( alpha beta)^2 =

IF alpha , beta are the roots of ax ^2 + bx +c=0 then (alpha ^3 + beta ^3)/(alpha ^(-3) + beta ^(-3)) =

AAKASH SERIES-LOGARITHMIC SERIES -EXERCISE - II(A) (CLASS WORK)
  1. If f(x)=1-x+x^(2)-x^(3)+x^(4)+….oo then int(0)^(x)f(x)dx=

    Text Solution

    |

  2. (1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/...

    Text Solution

    |

  3. If alpha, beta are the roots of x^(2)-px+q=0 then (alpha+beta)x-(alp...

    Text Solution

    |

  4. n^(th) term of log(e )(6//5) is

    Text Solution

    |

  5. log(4)2-log(8)2+log(16)2-....=

    Text Solution

    |

  6. 2.4^((-1)/(4))*8^((1)/(9))*16^((-1)/(16))*32^((1)/(25))*64^((-1)/(36))...

    Text Solution

    |

  7. (1)/(1.2)-(1)/(2.3)+(1)/(3.4)-(1)/(4.5)+....=

    Text Solution

    |

  8. (4)/(1.3)-(6)/(2.4)+(12)/(5.7)-(14)/(6.8)+….=

    Text Solution

    |

  9. (1)/(1.3)+(1)/(2.5)+(1)/(3.7)+(1)/(4.9)+...=

    Text Solution

    |

  10. The 3^(rd), 4^(th), 5^(th) terms in the expansion of log(e )2 are resp...

    Text Solution

    |

  11. sum(n=1)^(oo)(1)/(2n(2n+1))=

    Text Solution

    |

  12. -2[(1)/(8)+(1)/(64)+(1)/(384)+…..oo]=

    Text Solution

    |

  13. If |x| lt 1 then coefficient of x^(n) in log(10)(1-x) is

    Text Solution

    |

  14. log(1+x+x^(2)+...oo)=

    Text Solution

    |

  15. (2)/(1).(1)/(3)+(3)/(2).(1)/(9)+(4)/(3).(1)/(27)+(5)/(4).(1)/(81)+…oo=

    Text Solution

    |

  16. (sqrt(2)-1)/(sqrt(2))+(3-2sqrt(2))/(4)+(5sqrt(2)-7)/(6sqrt(2))+……oo=

    Text Solution

    |

  17. Assertion (A) : If x+(x^(2))/(2)+(x^(3))/(3)+………oo=log((7)/(6)) then...

    Text Solution

    |

  18. If f(x)=(1)/(x+1)+(1)/(2(x+1)^(2))+(1)/(3(x+1)^(3))+…(x gt 1) and f(1...

    Text Solution

    |

  19. y=2x^(2)-1, then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…….oo

    Text Solution

    |

  20. If |a| lt 1, b = sum(k=1)^(oo) (a^(k))/(k) rArr a=

    Text Solution

    |