Home
Class 12
MATHS
The sum of the series (x^(2))/(2)+(2)/...

The sum of the series
`(x^(2))/(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+(4)/(5)x^(5)+….=`

A

`(x)/(1+x)+log(1+x)`

B

`(x)/(1-x)+log(1-x)`

C

`-(x)/(1+x)+log(1+x)`

D

`(x)/(1-x)+log(1+x)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - II(B) (HOME WORK)|30 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • MATHEMATICAL REASONING

    AAKASH SERIES|Exercise Practice Exercise|21 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (1)/(2)((1)/(5))^(2)+(2)/(3)((1)/(5))^(3)+(3)/(4)((1)/(5))^(4)+... is

5x-(13)/(2)x^(2)+(35)/(3)x^(3)-(97)/(4)x^(4)+....=

(3.5)/(1!)x+(4.6)/(2!)x^(2)+(5.7)/(3!)x^(3)+....=

int(x^(3)+5x^(2)-4)/(x^(2))dx

The lines (x-1)/(a) = (y-2)/(3) = (z-3)/(4) , (x-2)/(3) = (y-3)/(4) = (z-4)/(5) are coplanar. Then a=

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

(5x^(2)-3x+4)/((x+1)(x^(2)-5x+6))=

The polynomial equation of degree 5 whose roots are the translates of the roots of x ^(5) - 2x ^(4) + 3x ^(3) -4x ^(2) + 5x -6=0 by -2 is

If the sum of the zeros of the polynomial f(x) = 2x^(3) - 3 kx^(2) + 4x - 5 is 6 then k = …………

Find the domain of the function f(x)=(x^(2)+3x+5)/(x^(2)-5x+4)