Home
Class 12
MATHS
(prove that) If the polar of the points ...

(prove that) If the polar of the points on the circle
`x^(2) + y ^(2) = a^(2)` with respect to the circle
` x^(2) + y^(2) = b^(2)` touches the circle `x^(2) + y^(2) = c^(2) `
then prove that a, b, c, are in Geometrical
progression.

Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE 1.4 ( VERY SHORT ANSWER QUESTIONS)|2 Videos
  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE 1.4 ( SHORT ANSWER QUESTIONS)|5 Videos
  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE 1.3 (VERY SHORT ANSWER QUESTIONS)|7 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos

Similar Questions

Explore conceptually related problems

The pole of a straight line with respect to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=9a^(2) . If the straight line touches the circle x^(2)+y^(2)=r^(2) , then

The polar of the point (4,1) w.r.t. the circle x^(2)+y^(2)-2x-2y-7=0

If the polars of points on the circle x^2+y^2=a^2 w.r.t. the circle x^2+y^2=b^2 touch the circle x^2+y^2=c^2 then a, b, c are in

The locus of poles of tangents to the circle (x-p)^(2)+y^(2)=b^(2) w.r.t. the circle x^(2)+y^(2)=a^(2) is

Show that the circle S = x^(2) +y^(2) +2gx +2fy +c=0 touches the y - axis if f^(2) =c

Show that the circle S = x^(2) +y^(2) +2gx +2fy +c=0 touches the X - axis if g^(2) =c

Find the length and mid-point of the chord 2x+ y-5 with respect to the circle x^(2) +y^(2) =9,

The polar of the point (1,2) w.r.t. the circle x^(2)+y^2-2x-4y-4=0