Home
Class 12
MATHS
Find the number of possible common tange...

Find the number of possible common tangents of following pairs of circles
(i) `x^(2)+y^(2)-14x+6y+33=0`
`x^(2)+y^(2)+30x-2y+1=0`
(ii) `x^(2)+y^(2)+6x+6y+14=0`
`x^(2)+y^(2)-2x-4y-4=0`
(iii) `x^(2)+y^(2)-4x-2y+1=0`
`x^(2)+y^(2)-6x-4y+4=0`
(iv) `x^(2)+y^(2)-4x+2y-4=0`
`x^(2)+y^(2)+2x-6y+6=0`
(v) `x^(2)+y^(2)+4x-6y-3=0`
`x^(2)+y^(2)+4x-2y+4=0`

Text Solution

Verified by Experts

The correct Answer is:
(i) 4 (ii) 4 (iii) 2 (iv) 3 (v) 0
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE 1.4 ( SHORT ANSWER QUESTIONS)|5 Videos
  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE 1.4 ( LONG ANSWER QUESTIONS)|3 Videos
  • CIRCLES

    AAKASH SERIES|Exercise EXERCISE 1.3 ( SHORT ANSWER QUESTIONS)|12 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos

Similar Questions

Explore conceptually related problems

Find all common tangents of the pairs of circles x^(2) +y^(2) +4x + 2y -4 =0 and x^(2) +y^(2) -4x -2y +4=0

Find the number of possible common tangent that exits for the following pairs of circle. (a) x^(2) + y ^(2) -4x -2y +1= 0, x^(2) +y^(2) -6x -4y +4=0 (b) x^(2) + y ^(2) -4 x + 2y -4=0 , x^(2) + y ^(2) + 2x - 6y + 6=0

Find the number of possible common tangents that exist for the following pairs of circles. x^(2) + y^(2) + 6x + 6y + 14 = 0 x^(2) + y(2) - 2x -4y -4 =0

Find the number of possible common tangents that exist for the following pairs of circles. x^(2) + y^(2) - 4x + 2y - 4 = 0, x^(2) + y ^(2) + 2x - 6y + 6 = 0

The number of common tangents that can be drawn to the circles x^(2)+y^(2)-4x+6y+8=0, x^(2)+y^(2)-10x-6y+14=0