Home
Class 12
MATHS
If f(x)=tan (pi//4 -x)//cot2x for x ne p...

If f(x)=tan `(pi//4 -x)//cot2x` for `x ne pi//4`. The value of `f(pi//4)` so that f is continuous at `x=pi//4` is

A

`1//3`

B

`1//2`

C

`1//4`

D

`1//6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f\left(\frac{\pi}{4}\right) \) such that the function \( f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot(2x)} \) is continuous at \( x = \frac{\pi}{4} \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Identify the Function**: \[ f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot(2x)} \] 2. **Evaluate the Limit**: We need to find: \[ \lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot(2x)} \] 3. **Substituting \( x = \frac{\pi}{4} \)**: \[ \tan\left(\frac{\pi}{4} - \frac{\pi}{4}\right) = \tan(0) = 0 \] \[ \cot\left(2 \cdot \frac{\pi}{4}\right) = \cot\left(\frac{\pi}{2}\right) = 0 \] This gives us a \( \frac{0}{0} \) form, so we can apply L'Hôpital's Rule. 4. **Differentiate Numerator and Denominator**: - **Numerator**: \[ \frac{d}{dx} \tan\left(\frac{\pi}{4} - x\right) = -\sec^2\left(\frac{\pi}{4} - x\right) \] - **Denominator**: \[ \frac{d}{dx} \cot(2x) = -2\csc^2(2x) \] 5. **Apply L'Hôpital's Rule**: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2\left(\frac{\pi}{4} - x\right)}{-2\csc^2(2x)} = \lim_{x \to \frac{\pi}{4}} \frac{\sec^2\left(\frac{\pi}{4} - x\right)}{2\csc^2(2x)} \] 6. **Evaluate the Limit**: - As \( x \to \frac{\pi}{4} \): \[ \sec^2\left(\frac{\pi}{4} - \frac{\pi}{4}\right) = \sec^2(0) = 1 \] \[ \csc^2\left(2 \cdot \frac{\pi}{4}\right) = \csc^2\left(\frac{\pi}{2}\right) = 1 \] Thus, we have: \[ \lim_{x \to \frac{\pi}{4}} f(x) = \frac{1}{2 \cdot 1} = \frac{1}{2} \] 7. **Conclusion**: Therefore, to make \( f \) continuous at \( x = \frac{\pi}{4} \), we set: \[ f\left(\frac{\pi}{4}\right) = \frac{1}{2} \] ### Final Answer: The value of \( f\left(\frac{\pi}{4}\right) \) so that \( f \) is continuous at \( x = \frac{\pi}{4} \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 2 (Single Correct Answer)|30 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numberical Answer)|16 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Single Correct Answer)|10 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(cos x -sinx)/(cos 2x)+ sin^2x , x ne pi/4 . The value of f(pi//4) so that f is continuous on (0,pi//2) is (sqrt2=1.41)

The function f(x)=(sin 2x)^(tan^(2)2x) is not defined at x=(pi)/(4) . The value of f(pi//4) , so that f is continuous at x=pi//4 , is

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

Let f(x)=(sqrt2-(cosx+sinx))/(1-sin2x), x ne pi//4 . The value f(pi//4) so that f is continuous is (sqrt2=1.41)

The function f(x)=(sinx)^(tan^(2)x) is not defined at x=(pi)/(2) . The value of f((pi)/(2)) such that f is continuous at x=(pi)/(2) is

If f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4). Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=(pi)/(4)

If f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4). Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=pi/4

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Solved Examples Level 1 (Single Correct Answer)
  1. Let f(x) be a continuous function defined for 1 <= x <= 3. If f(x) tak...

    Text Solution

    |

  2. Let f(x)= {{:(|x| cos (1//x)+9x^2, xne 0),(k, x=0):} then f is cont...

    Text Solution

    |

  3. If f(x)=tan (pi//4 -x)//cot2x for x ne pi//4. The value of f(pi//4) so...

    Text Solution

    |

  4. Let a function f be defined by f(x)="x-|x|"/x for x ne 0 and f(0)=2. T...

    Text Solution

    |

  5. If f(x) is a continuous function satisfying f(x)f(1/x) =f(x)+f(1/x) an...

    Text Solution

    |

  6. The function f(x) = (x-1)^(1/((2-x)) is not defined at x = 2. The valu...

    Text Solution

    |

  7. Let f(x)=(x+x^2+.....+x^n-n)/(x-1), x!=1, then value of f(1) so that f...

    Text Solution

    |

  8. If f(u) = 1/(u^(2)+u-2) , where u = 1/(x-1) , then the points of dis...

    Text Solution

    |

  9. Let f(x) and phi(x) be defined by f(x)=[x] and phi(x)={0, x in I and...

    Text Solution

    |

  10. If a,b are chosen from {1,2,3,4,5,6,7} randomly with replacement. The ...

    Text Solution

    |

  11. The value of lim(xto pi//2)(cot x-cosx)/(pi-2x)^3 is

    Text Solution

    |

  12. If underset(x to 0)lim({(a-n)nx - tan x} sin nx)/x^(2) = 0, where n is...

    Text Solution

    |

  13. Find derivative of tan3x by first principle

    Text Solution

    |

  14. The value of lim(x to 0) (e^(nx)-(1+nx+n^2/2x^2))/x^3 (n gt 0) is

    Text Solution

    |

  15. Let f(x)=(e^(x)-1)^(2n)/(sin^n (x//a)(log (1+(x//a)))^n for x ne 0 . I...

    Text Solution

    |

  16. Let f(x)={{:(x+a,","x lt 0),(|x-1|,","x ge 0):} and g(x)={{:(x+1,", if...

    Text Solution

    |

  17. If f:RtoR is function defined by f(x) = [x]^3 cos ((2x-1)/2)pi , where...

    Text Solution

    |

  18. If underset( x to 0) lim [1+x log (1+b^(2))]^(1/x) = 2b sin^(2) the...

    Text Solution

    |

  19. Let f :R to [0,oo) be such that lim(xto3)f(x) exists and lim(x to 3) (...

    Text Solution

    |

  20. The value of lim(x to 0) (["11x"/"sinx"]+["21 sinx"/x]), where [x] is ...

    Text Solution

    |