Home
Class 12
MATHS
The value of lim(x to 0) (e^(nx)-(1+nx+n...

The value of `lim_(x to 0) (e^(nx)-(1+nx+n^2/2x^2))/x^3 (n gt 0)` is

A

`n^2/6`

B

`n^3/3`

C

`n^3/6`

D

`1//6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{e^{nx} - (1 + nx + \frac{n^2}{2}x^2)}{x^3} \) where \( n > 0 \), we will use the Taylor series expansion for \( e^{nx} \). ### Step-by-step Solution: 1. **Recall the Taylor Series Expansion**: The Taylor series expansion of \( e^{nx} \) around \( x = 0 \) is: \[ e^{nx} = 1 + nx + \frac{(nx)^2}{2!} + \frac{(nx)^3}{3!} + \cdots \] This can be simplified to: \[ e^{nx} = 1 + nx + \frac{n^2 x^2}{2} + \frac{n^3 x^3}{6} + O(x^4) \] 2. **Substituting the Expansion into the Limit**: We substitute the series expansion into the limit: \[ e^{nx} - (1 + nx + \frac{n^2}{2}x^2) = \left(1 + nx + \frac{n^2 x^2}{2} + \frac{n^3 x^3}{6} + O(x^4)\right) - \left(1 + nx + \frac{n^2}{2}x^2\right) \] Simplifying this gives: \[ e^{nx} - (1 + nx + \frac{n^2}{2}x^2) = \frac{n^3 x^3}{6} + O(x^4) \] 3. **Setting Up the Limit**: Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{\frac{n^3 x^3}{6} + O(x^4)}{x^3} \] This simplifies to: \[ \lim_{x \to 0} \left(\frac{n^3}{6} + \frac{O(x^4)}{x^3}\right) \] 4. **Evaluating the Limit**: As \( x \to 0 \), the term \( \frac{O(x^4)}{x^3} \) approaches \( 0 \). Therefore, we have: \[ \lim_{x \to 0} \left(\frac{n^3}{6} + 0\right) = \frac{n^3}{6} \] 5. **Final Result**: Thus, the value of the limit is: \[ \frac{n^3}{6} \] ### Conclusion: The final answer is: \[ \lim_{x \to 0} \frac{e^{nx} - (1 + nx + \frac{n^2}{2}x^2)}{x^3} = \frac{n^3}{6} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 2 (Single Correct Answer)|30 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numberical Answer)|16 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Single Correct Answer)|10 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)((e^(1))/(x))-(1+nx+(n^(2))/(2)x^(2))/(x^(3))(n>0) is

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(x rarr oo)(x^(n)+nx^(n-1)+1)/(e^(|x|)),n in1 is

The value of Lim_(ntooo) ((2x)/(pi)cot^(-1)(nx)-x) is/are

If lim_(x to 0) ({(a-n)nx - tan x} sin nx)/x^(2) = 0 , where n is non-zero real number, then a is equal to

lim_(x to 0) ("sin" (nx)((a - n)nx - tanx))/(x^(2)) = 0 when n is a non-zero positive integer,then a equal to ________

If lim_(x rarr0)(e^(-nx)+e^(nx)-2cos(yx)/(2)-kx^(2))/(sin x-tan x) exists and finite (n,k in N) then the least value of 4k+n-:2 is:

The value of lim_(x rarr0)((1^(x)+2^(x)+3^(x)+.........n^(x))/(n))^((a)/(pi))

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Solved Examples Level 1 (Single Correct Answer)
  1. If f(x) is a continuous function satisfying f(x)f(1/x) =f(x)+f(1/x) an...

    Text Solution

    |

  2. The function f(x) = (x-1)^(1/((2-x)) is not defined at x = 2. The valu...

    Text Solution

    |

  3. Let f(x)=(x+x^2+.....+x^n-n)/(x-1), x!=1, then value of f(1) so that f...

    Text Solution

    |

  4. If f(u) = 1/(u^(2)+u-2) , where u = 1/(x-1) , then the points of dis...

    Text Solution

    |

  5. Let f(x) and phi(x) be defined by f(x)=[x] and phi(x)={0, x in I and...

    Text Solution

    |

  6. If a,b are chosen from {1,2,3,4,5,6,7} randomly with replacement. The ...

    Text Solution

    |

  7. The value of lim(xto pi//2)(cot x-cosx)/(pi-2x)^3 is

    Text Solution

    |

  8. If underset(x to 0)lim({(a-n)nx - tan x} sin nx)/x^(2) = 0, where n is...

    Text Solution

    |

  9. Find derivative of tan3x by first principle

    Text Solution

    |

  10. The value of lim(x to 0) (e^(nx)-(1+nx+n^2/2x^2))/x^3 (n gt 0) is

    Text Solution

    |

  11. Let f(x)=(e^(x)-1)^(2n)/(sin^n (x//a)(log (1+(x//a)))^n for x ne 0 . I...

    Text Solution

    |

  12. Let f(x)={{:(x+a,","x lt 0),(|x-1|,","x ge 0):} and g(x)={{:(x+1,", if...

    Text Solution

    |

  13. If f:RtoR is function defined by f(x) = [x]^3 cos ((2x-1)/2)pi , where...

    Text Solution

    |

  14. If underset( x to 0) lim [1+x log (1+b^(2))]^(1/x) = 2b sin^(2) the...

    Text Solution

    |

  15. Let f :R to [0,oo) be such that lim(xto3)f(x) exists and lim(x to 3) (...

    Text Solution

    |

  16. The value of lim(x to 0) (["11x"/"sinx"]+["21 sinx"/x]), where [x] is ...

    Text Solution

    |

  17. If lim(x to 0) (x^n-sin^n x)/(x-sin^n x) is nonzero and finite , then ...

    Text Solution

    |

  18. Value of lim(n->oo)sum(r=1)^ntan^(-1)(1/(2r^2)) is

    Text Solution

    |

  19. If f is a continuous function and x^3-(sqrt5+1)x^2+(sqrt5-2 + f(x))x+2...

    Text Solution

    |

  20. If x =u is a point of discontinuity of f(x)=lim(n to oo) cos^(2n)x, th...

    Text Solution

    |