Home
Class 12
MATHS
If f is a continuous function and x^3-(s...

If f is a continuous function and `x^3-(sqrt5+1)x^2+(sqrt5-2 + f(x))x+2 sqrt5-sqrt5 f(x)=0` satisfies for `x in R` then `f(sqrt5)` is equal to

A

`2-sqrt5`

B

`5+sqrt5`

C

`3-sqrt5`

D

can not be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and find the value of \( f(\sqrt{5}) \). ### Step 1: Substitute \( x = \sqrt{5} \) into the equation The equation given is: \[ x^3 - (\sqrt{5} + 1)x^2 + (\sqrt{5} - 2 + f(x))x + (2\sqrt{5} - \sqrt{5}f(x)) = 0 \] Substituting \( x = \sqrt{5} \): \[ (\sqrt{5})^3 - (\sqrt{5} + 1)(\sqrt{5})^2 + (\sqrt{5} - 2 + f(\sqrt{5}))(\sqrt{5}) + (2\sqrt{5} - \sqrt{5}f(\sqrt{5})) = 0 \] ### Step 2: Calculate each term 1. **Calculate \( (\sqrt{5})^3 \)**: \[ (\sqrt{5})^3 = 5\sqrt{5} \] 2. **Calculate \( (\sqrt{5} + 1)(\sqrt{5})^2 \)**: \[ (\sqrt{5} + 1)(\sqrt{5})^2 = (\sqrt{5} + 1)(5) = 5\sqrt{5} + 5 \] 3. **Calculate \( (\sqrt{5} - 2 + f(\sqrt{5}))(\sqrt{5}) \)**: \[ (\sqrt{5} - 2 + f(\sqrt{5}))(\sqrt{5}) = 5 - 2\sqrt{5} + f(\sqrt{5})\sqrt{5} \] 4. **Calculate \( (2\sqrt{5} - \sqrt{5}f(\sqrt{5})) \)**: \[ 2\sqrt{5} - \sqrt{5}f(\sqrt{5}) \] ### Step 3: Substitute back into the equation Now substituting these calculated values back into the equation: \[ 5\sqrt{5} - (5\sqrt{5} + 5) + (5 - 2\sqrt{5} + f(\sqrt{5})\sqrt{5}) + (2\sqrt{5} - \sqrt{5}f(\sqrt{5})) = 0 \] ### Step 4: Simplify the equation Combining like terms: \[ 5\sqrt{5} - 5\sqrt{5} - 5 + 5 - 2\sqrt{5} + f(\sqrt{5})\sqrt{5} + 2\sqrt{5} - \sqrt{5}f(\sqrt{5}) = 0 \] This simplifies to: \[ 0 + f(\sqrt{5})\sqrt{5} - \sqrt{5}f(\sqrt{5}) = 0 \] ### Step 5: Factor out \( f(\sqrt{5}) \) This gives us: \[ 0 = 0 \] This means that the terms involving \( f(\sqrt{5}) \) cancel out, leading us to conclude that \( f(\sqrt{5}) \) can take any value without affecting the validity of the equation. ### Conclusion Since \( f(\sqrt{5}) \) cannot be determined from the given equation, we conclude: \[ f(\sqrt{5}) \text{ is indeterminate.} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 2 (Single Correct Answer)|30 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numberical Answer)|16 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Single Correct Answer)|10 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(x^(5)) , then f(5x) is equal to :

6 sqrt5 x ^(2) - 2x - 4 sqrt5 is equal to

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x) = sqrt((sqrt(x-1)-2)^2)+sqrt((sqrt(x-1)-3)^2) , then f '(2) is equal to :

If f(x) is continuous at x=a, where f(x) = (sqrt(x)-sqrt(a) + sqrt(x-a))/sqrt(x^(2) -a^(2)) , for x ne a , then f(a)=

If function f(x)=(sqrt(1+x)-3sqrt(1+x))/(x) continuous function at x=0 then f(0) is equal to

Domain of function f(x)=sqrt(x-sqrt(1-x^(2)))

f(x)=sqrt(x-4-2sqrt(x-5))

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Solved Examples Level 1 (Single Correct Answer)
  1. If f(x) is a continuous function satisfying f(x)f(1/x) =f(x)+f(1/x) an...

    Text Solution

    |

  2. The function f(x) = (x-1)^(1/((2-x)) is not defined at x = 2. The valu...

    Text Solution

    |

  3. Let f(x)=(x+x^2+.....+x^n-n)/(x-1), x!=1, then value of f(1) so that f...

    Text Solution

    |

  4. If f(u) = 1/(u^(2)+u-2) , where u = 1/(x-1) , then the points of dis...

    Text Solution

    |

  5. Let f(x) and phi(x) be defined by f(x)=[x] and phi(x)={0, x in I and...

    Text Solution

    |

  6. If a,b are chosen from {1,2,3,4,5,6,7} randomly with replacement. The ...

    Text Solution

    |

  7. The value of lim(xto pi//2)(cot x-cosx)/(pi-2x)^3 is

    Text Solution

    |

  8. If underset(x to 0)lim({(a-n)nx - tan x} sin nx)/x^(2) = 0, where n is...

    Text Solution

    |

  9. Find derivative of tan3x by first principle

    Text Solution

    |

  10. The value of lim(x to 0) (e^(nx)-(1+nx+n^2/2x^2))/x^3 (n gt 0) is

    Text Solution

    |

  11. Let f(x)=(e^(x)-1)^(2n)/(sin^n (x//a)(log (1+(x//a)))^n for x ne 0 . I...

    Text Solution

    |

  12. Let f(x)={{:(x+a,","x lt 0),(|x-1|,","x ge 0):} and g(x)={{:(x+1,", if...

    Text Solution

    |

  13. If f:RtoR is function defined by f(x) = [x]^3 cos ((2x-1)/2)pi , where...

    Text Solution

    |

  14. If underset( x to 0) lim [1+x log (1+b^(2))]^(1/x) = 2b sin^(2) the...

    Text Solution

    |

  15. Let f :R to [0,oo) be such that lim(xto3)f(x) exists and lim(x to 3) (...

    Text Solution

    |

  16. The value of lim(x to 0) (["11x"/"sinx"]+["21 sinx"/x]), where [x] is ...

    Text Solution

    |

  17. If lim(x to 0) (x^n-sin^n x)/(x-sin^n x) is nonzero and finite , then ...

    Text Solution

    |

  18. Value of lim(n->oo)sum(r=1)^ntan^(-1)(1/(2r^2)) is

    Text Solution

    |

  19. If f is a continuous function and x^3-(sqrt5+1)x^2+(sqrt5-2 + f(x))x+2...

    Text Solution

    |

  20. If x =u is a point of discontinuity of f(x)=lim(n to oo) cos^(2n)x, th...

    Text Solution

    |