Home
Class 12
MATHS
lim(n->oo) [1/(1.2)+1/(2.3)+1/(3.4)+...+...

`lim_(n->oo) [1/(1.2)+1/(2.3)+1/(3.4)+...+1/(n(n+1))]=`

A

0

B

`1/2`

C

`1/3`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 1 Single Correct Answer)|39 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 2 Single Correct Answer)|25 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numberical Answer)|16 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) [(1) / (1.2) + (1) / (2.3) + (1) / (3.4) + ... + (1) / (n (n + 1))] =

lim_ (n rarr oo) (1.2 + 2.3 + 3.4 + .... + n (n + 1)) / (n ^ (3))

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_ (n rarr oo) ((1) / (2) +1+ (3) / (2) + ... + (n) / (2)) / (25n ^ (2) + n + 3)

lim_(n rarr oo){(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+....+(1)/((2n+1)(2n+3 ))

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

evaluate lim_ (n rarr oo) [(1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (2)) + ......... + (1) / (3 ^ (n))]

lim_(n rarr oo)((1)/(1.4)+(1)/(4.7)++(1)/((3n-2)(3n+1))))

lim_(x->oo) [(1)/(1times2)+(1)/(2times3)+(1)/(3times4)+.....+(1)/(n(n+1))]