Home
Class 12
MATHS
The value of lim(x to 0) ("sinx"/x)^("si...

The value of `lim_(x to 0) ("sinx"/x)^("sin x"/"x-sinx")` is

A

e

B

1

C

`e^2`

D

1/e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x}} \), we will follow these steps: ### Step 1: Evaluate the base \( \frac{\sin x}{x} \) As \( x \) approaches 0, we know from the standard limit that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] ### Step 2: Evaluate the exponent \( \frac{\sin x}{x - \sin x} \) We need to analyze the limit of the exponent as \( x \) approaches 0. We can rewrite the expression \( x - \sin x \) using the Taylor series expansion for \( \sin x \): \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] Thus, \[ x - \sin x = x - \left( x - \frac{x^3}{6} + O(x^5) \right) = \frac{x^3}{6} - O(x^5) \] As \( x \to 0 \), the dominant term is \( \frac{x^3}{6} \). Now substituting this back into the exponent: \[ \frac{\sin x}{x - \sin x} = \frac{\sin x}{\frac{x^3}{6}} = \frac{6 \sin x}{x^3} \] As \( x \to 0 \), we can again use the limit \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \): \[ \lim_{x \to 0} \frac{6 \sin x}{x^3} = \lim_{x \to 0} \frac{6 \cdot 1}{x^2} = \infty \] ### Step 3: Combine the results Now we have: \[ \left( \frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x}} = 1^{\infty} \] This is an indeterminate form. To resolve this, we can use the logarithm: Let \( L = \lim_{x \to 0} \left( \frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x}} \). Taking the natural logarithm: \[ \ln L = \lim_{x \to 0} \frac{\sin x}{x - \sin x} \ln\left( \frac{\sin x}{x} \right) \] ### Step 4: Evaluate \( \ln\left( \frac{\sin x}{x} \right) \) Using the approximation \( \frac{\sin x}{x} \approx 1 - \frac{x^2}{6} \) for small \( x \): \[ \ln\left( \frac{\sin x}{x} \right) \approx \ln\left( 1 - \frac{x^2}{6} \right) \approx -\frac{x^2}{6} \] ### Step 5: Substitute back into the limit Now substituting back: \[ \ln L = \lim_{x \to 0} \frac{6 \sin x}{x^3} \left(-\frac{x^2}{6}\right) = -\lim_{x \to 0} \frac{\sin x}{x} = -1 \] Thus, \[ L = e^{-1} = \frac{1}{e} \] ### Final Answer Therefore, the value of the limit is: \[ \lim_{x \to 0} \left( \frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x}} = \frac{1}{e} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Numerical Answer)|16 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Questions for Previous Years AIEEE/JEE Main Papers|44 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 1 Single Correct Answer)|39 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is

lim_(x to 0) (sin(sinx))/x

Evaluate lim_(x to 0) ((sinx)/(x))^(((sinx)/(x-sinx))).

lim_(x to 0) (x^3 sin(1/x))/sinx

The value of lim_(x to 0) (["11x"/"sinx"]+["21 sinx"/x]) , where [x] is the greatest integer less than or equal to x is

The value of lim_(xrarroo) (sinx)/(x) , is

The value of lim_(x to 0) (e^x-e^sinx)/(2(x-sinx)) , is

What is the value of lim_(xto0) (sinx)/(x) ?

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Exercise (Level 2 Single Correct Answer)
  1. Let f(x)=e^x sgn (x+[x]) , where sgn is the signum function and [x] is...

    Text Solution

    |

  2. The value of lim(x-> -4) (tanpix)/(x+4) + lim(x->oo)(1+1/x^2)^x is

    Text Solution

    |

  3. The value of lim(x to 0) ("sinx"/x)^("sin x"/"x-sinx") is

    Text Solution

    |

  4. The value of lim(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7...

    Text Solution

    |

  5. Let f(x)=x-1 and g(x)=1/x. Then the set of points where gofog is conti...

    Text Solution

    |

  6. Let f(x)=lim( n to oo) ([x^2]+[(2x)^2]+... + [(nx)^2])/n^3 then the se...

    Text Solution

    |

  7. If : f(x){:( =1", ... x is rational"),(=0", ...x is irr...

    Text Solution

    |

  8. Let f(x) be given that f(x)={{:(,x,"if x is rational"),(,1-x,"if x is ...

    Text Solution

    |

  9. Let f:R to R be any function. Defining g: R to R by g(x)=|f(x)|" for "...

    Text Solution

    |

  10. Let f be a function defined on R by f(x)=lim(n to oo) (log (3+x)-x^(2n...

    Text Solution

    |

  11. If f(x)=((x^2+5x+3)/(x^2+x+2))^x then lim(xtooo)f(x) is equal to

    Text Solution

    |

  12. Let f(x) be defined for all > x0 and be continuous. Let f(x) satisfies...

    Text Solution

    |

  13. Given the function f(x)=1/(1-x), the numbers of discontinuities of f^...

    Text Solution

    |

  14. If f(x)=(1+sinx-cosx)/(1-sinx-cosx), x ne 0 . The value of f(0) so tha...

    Text Solution

    |

  15. If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is cont...

    Text Solution

    |

  16. If f(x)={((x^(3)+x^(2)-16x+20)/((x-2)^(2))",",x ne 2),(k",", x =2):} ...

    Text Solution

    |

  17. f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} ,x = 2.

    Text Solution

    |

  18. If the function f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x !=...

    Text Solution

    |

  19. If a and b are positive integers then

    Text Solution

    |

  20. Let f(x)=(tan[e^2]x^2-tan[-e^2]x^2)/(sin^2x), x!=0 then the value of f...

    Text Solution

    |