Home
Class 12
MATHS
If f(x)=(1+sinx-cosx)/(1-sinx-cosx), x n...

If `f(x)=(1+sinx-cosx)/(1-sinx-cosx), x ne 0` . The value of f(0) so that f is a continuous function is

A

1

B

`-2`

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) such that the function \( f(x) = \frac{1 + \sin x - \cos x}{1 - \sin x - \cos x} \) is continuous at \( x = 0 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0. ### Step-by-step Solution: 1. **Identify the requirement for continuity**: For \( f(x) \) to be continuous at \( x = 0 \), we need: \[ \lim_{x \to 0} f(x) = f(0) \] 2. **Calculate the limit**: We need to evaluate: \[ \lim_{x \to 0} \frac{1 + \sin x - \cos x}{1 - \sin x - \cos x} \] 3. **Substituting the values**: As \( x \) approaches 0, we know: - \( \sin(0) = 0 \) - \( \cos(0) = 1 \) Substituting these values into the function: \[ f(0) = \frac{1 + 0 - 1}{1 - 0 - 1} = \frac{0}{0} \] This is an indeterminate form, so we need to apply L'Hôpital's Rule or simplify further. 4. **Simplifying the expression**: We can rewrite \( 1 - \cos x \) using the identity \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \) and \( \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \): \[ \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \] Thus, we can rewrite the limit: \[ \lim_{x \to 0} \frac{1 + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) - (1 - 2 \sin^2\left(\frac{x}{2}\right))}{1 - 2 \sin^2\left(\frac{x}{2}\right) - (1 - 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right))} \] 5. **Further simplification**: After simplifying the numerator and denominator, we can cancel out common factors: \[ = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right) + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)}{2 \sin^2\left(\frac{x}{2}\right) - 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)} \] 6. **Taking the limit**: As \( x \) approaches 0, \( \sin\left(\frac{x}{2}\right) \) approaches 0 and \( \cos\left(\frac{x}{2}\right) \) approaches 1: \[ = \frac{0 + 0}{0 - 0} = \frac{0}{0} \] We can apply L'Hôpital's Rule again or substitute small angle approximations. 7. **Final evaluation**: After applying L'Hôpital's Rule or further simplification, we find: \[ \lim_{x \to 0} f(x) = -1 \] 8. **Setting \( f(0) \)**: Therefore, for \( f(x) \) to be continuous at \( x = 0 \): \[ f(0) = -1 \] ### Conclusion: The value of \( f(0) \) so that \( f \) is a continuous function is \( \boxed{-1} \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Numerical Answer)|16 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Questions for Previous Years AIEEE/JEE Main Papers|44 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 1 Single Correct Answer)|39 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(1+sinx)^"cosec x" , the value of f(0) so that f is a continuous function is

The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi . The value of f(pi) so that f(x) is continuous at x=pi is

The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is nto defined at x=pi . The value of f(pi) so that f(x) is continuous at x=pi is:

The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi . The value of f(pi) , so that f(x) is continuous at x=pi , is

Let f(x)=(log (1+x+x^2)+log(1-x+x^2))/(sec x-cosx) , x ne 0 .Then the value of f(0) so that f is continuous at x=0 is

Let f(x)=(sqrt2-(cosx+sinx))/(1-sin2x), x ne pi//4 . The value f(pi//4) so that f is continuous is (sqrt2=1.41)

f(x)= (1-sinx+cosx)/(1+sinx+cosx) discontinuous at x=pi . Find f(pi) so that f(x) is continuous x=pi

If f(x)=(sqrt(1+sinx)-sqrt(1-sinx))/(x) , then we value of f at x = 0, so that f is continuous everywhere, is

Let f(x)=(x(3^(x)-1))/(1-cosx)" for "x ne0 . Then value of f(0) , which make f(x) continuous at x = 0, is

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Exercise (Level 2 Single Correct Answer)
  1. The value of lim(x-> -4) (tanpix)/(x+4) + lim(x->oo)(1+1/x^2)^x is

    Text Solution

    |

  2. The value of lim(x to 0) ("sinx"/x)^("sin x"/"x-sinx") is

    Text Solution

    |

  3. The value of lim(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7...

    Text Solution

    |

  4. Let f(x)=x-1 and g(x)=1/x. Then the set of points where gofog is conti...

    Text Solution

    |

  5. Let f(x)=lim( n to oo) ([x^2]+[(2x)^2]+... + [(nx)^2])/n^3 then the se...

    Text Solution

    |

  6. If : f(x){:( =1", ... x is rational"),(=0", ...x is irr...

    Text Solution

    |

  7. Let f(x) be given that f(x)={{:(,x,"if x is rational"),(,1-x,"if x is ...

    Text Solution

    |

  8. Let f:R to R be any function. Defining g: R to R by g(x)=|f(x)|" for "...

    Text Solution

    |

  9. Let f be a function defined on R by f(x)=lim(n to oo) (log (3+x)-x^(2n...

    Text Solution

    |

  10. If f(x)=((x^2+5x+3)/(x^2+x+2))^x then lim(xtooo)f(x) is equal to

    Text Solution

    |

  11. Let f(x) be defined for all > x0 and be continuous. Let f(x) satisfies...

    Text Solution

    |

  12. Given the function f(x)=1/(1-x), the numbers of discontinuities of f^...

    Text Solution

    |

  13. If f(x)=(1+sinx-cosx)/(1-sinx-cosx), x ne 0 . The value of f(0) so tha...

    Text Solution

    |

  14. If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is cont...

    Text Solution

    |

  15. If f(x)={((x^(3)+x^(2)-16x+20)/((x-2)^(2))",",x ne 2),(k",", x =2):} ...

    Text Solution

    |

  16. f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} ,x = 2.

    Text Solution

    |

  17. If the function f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x !=...

    Text Solution

    |

  18. If a and b are positive integers then

    Text Solution

    |

  19. Let f(x)=(tan[e^2]x^2-tan[-e^2]x^2)/(sin^2x), x!=0 then the value of f...

    Text Solution

    |

  20. The value of f(0) so that the function f(x)= (cos a x - cos bx)/x^2 ,...

    Text Solution

    |