Home
Class 12
MATHS
If a and b are positive integers then...

If a and b are positive integers then

A

`lim_( x to 0+) x/a [b/x]=a/b`

B

`lim_( x to 0+) x/a [b/x]=ab`

C

`lim_(x to 0+) a/x [x/b]=b/a`

D

`lim_( x to 0+) x/a [b/x]=b/a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limit problem, we need to evaluate the limit: \[ \lim_{x \to 0^+} \frac{x}{a} \left\lfloor \frac{b}{x} \right\rfloor \] where \( a \) and \( b \) are positive integers. ### Step-by-Step Solution: 1. **Understanding the Floor Function**: The floor function \( \left\lfloor \frac{b}{x} \right\rfloor \) gives the greatest integer less than or equal to \( \frac{b}{x} \). As \( x \) approaches \( 0^+ \), \( \frac{b}{x} \) approaches \( +\infty \), and thus \( \left\lfloor \frac{b}{x} \right\rfloor \) also approaches \( +\infty \). 2. **Rewriting the Limit**: We can express the limit as: \[ \lim_{x \to 0^+} \frac{x}{a} \left\lfloor \frac{b}{x} \right\rfloor = \lim_{x \to 0^+} \frac{x}{a} \left( \frac{b}{x} - \left\{ \frac{b}{x} \right\} \right) \] where \( \left\{ \frac{b}{x} \right\} \) is the fractional part of \( \frac{b}{x} \). 3. **Simplifying the Expression**: This can be simplified to: \[ \lim_{x \to 0^+} \left( \frac{b}{a} - \frac{x}{a} \left\{ \frac{b}{x} \right\} \right) \] 4. **Evaluating the Limit**: As \( x \to 0^+ \), \( \left\{ \frac{b}{x} \right\} \) remains bounded between \( 0 \) and \( 1 \). Therefore, \( \frac{x}{a} \left\{ \frac{b}{x} \right\} \) approaches \( 0 \) because \( x \) approaches \( 0 \). Thus, we have: \[ \lim_{x \to 0^+} \frac{x}{a} \left\{ \frac{b}{x} \right\} = 0 \] 5. **Final Result**: Therefore, the limit simplifies to: \[ \lim_{x \to 0^+} \left( \frac{b}{a} - 0 \right) = \frac{b}{a} \] ### Conclusion: The value of the limit is: \[ \frac{b}{a} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Numerical Answer)|16 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Questions for Previous Years AIEEE/JEE Main Papers|44 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 1 Single Correct Answer)|39 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If a-b=4 and a^2+b^2=40 , where a and b are positive integers, then a^3+b^3 is equal to

If a and b are positive integers with no common factor,show that [(a)/(b)]+[(2a)/(b)]+[(3a)/(b)]+....[((a-1)0)/(b)]=((a-1)(b-1))/(2) when [;] denctes the

If a and b are positive integers with no common factor,show that [(a)/(b)]+[(2a)/(b)]+[(3a)/(b)]......[((b-1)a)/(b)]=((a-1)(b-1))/(2) when [.] shows the greatest integer function

int_(1)^(e)(x^(4)ln x+2)/(x^(3)ln x+x)dx=(e^(2)+a)/(b)-ln(e^(2)+1) where a and b are positive integers then (a)/(b)=

If sqrt(10-2 sqrt 21)+ sqrt(8+2 sqrt 15)=sqrt a+ sqrt b , where a and b are positive integers, then the value of sqrt(ab) is closest to:

If a and b are positive integers such that a^(b)=125 , then (a-b)^(a+b-4) is equal to

If a and b are positive integers such that a^(2)-b^(4)=2009, find a+b

If a and b are positive integers each greater then 1 and if 11(a-1)=13(b-1) what is the least possible value of a+b?

If a and b are positive integers such that a^(2)-b^(4)=2009, then a+b^(2)=lamda^(2). "The value"|lamda| is

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Exercise (Level 2 Single Correct Answer)
  1. The value of lim(x-> -4) (tanpix)/(x+4) + lim(x->oo)(1+1/x^2)^x is

    Text Solution

    |

  2. The value of lim(x to 0) ("sinx"/x)^("sin x"/"x-sinx") is

    Text Solution

    |

  3. The value of lim(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7...

    Text Solution

    |

  4. Let f(x)=x-1 and g(x)=1/x. Then the set of points where gofog is conti...

    Text Solution

    |

  5. Let f(x)=lim( n to oo) ([x^2]+[(2x)^2]+... + [(nx)^2])/n^3 then the se...

    Text Solution

    |

  6. If : f(x){:( =1", ... x is rational"),(=0", ...x is irr...

    Text Solution

    |

  7. Let f(x) be given that f(x)={{:(,x,"if x is rational"),(,1-x,"if x is ...

    Text Solution

    |

  8. Let f:R to R be any function. Defining g: R to R by g(x)=|f(x)|" for "...

    Text Solution

    |

  9. Let f be a function defined on R by f(x)=lim(n to oo) (log (3+x)-x^(2n...

    Text Solution

    |

  10. If f(x)=((x^2+5x+3)/(x^2+x+2))^x then lim(xtooo)f(x) is equal to

    Text Solution

    |

  11. Let f(x) be defined for all > x0 and be continuous. Let f(x) satisfies...

    Text Solution

    |

  12. Given the function f(x)=1/(1-x), the numbers of discontinuities of f^...

    Text Solution

    |

  13. If f(x)=(1+sinx-cosx)/(1-sinx-cosx), x ne 0 . The value of f(0) so tha...

    Text Solution

    |

  14. If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is cont...

    Text Solution

    |

  15. If f(x)={((x^(3)+x^(2)-16x+20)/((x-2)^(2))",",x ne 2),(k",", x =2):} ...

    Text Solution

    |

  16. f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} ,x = 2.

    Text Solution

    |

  17. If the function f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x !=...

    Text Solution

    |

  18. If a and b are positive integers then

    Text Solution

    |

  19. Let f(x)=(tan[e^2]x^2-tan[-e^2]x^2)/(sin^2x), x!=0 then the value of f...

    Text Solution

    |

  20. The value of f(0) so that the function f(x)= (cos a x - cos bx)/x^2 ,...

    Text Solution

    |