Home
Class 12
MATHS
If (5x-2)/x lt f(x) lt (5x^2-4x)/x^2 and...

If `(5x-2)/x lt f(x) lt (5x^2-4x)/x^2` and `(sinx^2)/x lt g (x) lt (log (1+x^2))/x` then `|lim_( xtooo)f(x) -lim_( x to oo) g(x)|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the limits of the functions \( f(x) \) and \( g(x) \) as \( x \) approaches infinity, and then find the absolute difference between these two limits. ### Step 1: Evaluate \( \lim_{x \to \infty} f(x) \) We are given: \[ \frac{5x - 2}{x} < f(x) < \frac{5x^2 - 4x}{x^2} \] First, simplify the bounds: 1. **Lower Bound**: \[ \frac{5x - 2}{x} = 5 - \frac{2}{x} \] 2. **Upper Bound**: \[ \frac{5x^2 - 4x}{x^2} = 5 - \frac{4}{x} \] Now we have: \[ 5 - \frac{2}{x} < f(x) < 5 - \frac{4}{x} \] ### Step 2: Take the limit as \( x \to \infty \) Now, we evaluate the limits of the lower and upper bounds: \[ \lim_{x \to \infty} \left(5 - \frac{2}{x}\right) = 5 - 0 = 5 \] \[ \lim_{x \to \infty} \left(5 - \frac{4}{x}\right) = 5 - 0 = 5 \] By the Squeeze Theorem (or Sandwich Theorem), since both bounds converge to 5, we conclude: \[ \lim_{x \to \infty} f(x) = 5 \] ### Step 3: Evaluate \( \lim_{x \to \infty} g(x) \) We are given: \[ \frac{\sin(x^2)}{x} < g(x) < \frac{\log(1 + x^2)}{x} \] 1. **Lower Bound**: \[ \frac{\sin(x^2)}{x} \] As \( x \to \infty \), \( \sin(x^2) \) oscillates between -1 and 1, thus: \[ -\frac{1}{x} < \frac{\sin(x^2)}{x} < \frac{1}{x} \] Therefore, taking the limit: \[ \lim_{x \to \infty} \frac{\sin(x^2)}{x} = 0 \] 2. **Upper Bound**: \[ \frac{\log(1 + x^2)}{x} \] As \( x \to \infty \), we can use the fact that \( \log(1 + x^2) \sim \log(x^2) = 2\log(x) \): \[ \lim_{x \to \infty} \frac{\log(1 + x^2)}{x} = \lim_{x \to \infty} \frac{2\log(x)}{x} = 0 \] By the Squeeze Theorem again: \[ \lim_{x \to \infty} g(x) = 0 \] ### Step 4: Calculate \( | \lim_{x \to \infty} f(x) - \lim_{x \to \infty} g(x) | \) Now we have: \[ \lim_{x \to \infty} f(x) = 5 \quad \text{and} \quad \lim_{x \to \infty} g(x) = 0 \] Thus: \[ | \lim_{x \to \infty} f(x) - \lim_{x \to \infty} g(x) | = |5 - 0| = 5 \] ### Final Answer: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Questions for Previous Years AIEEE/JEE Main Papers|44 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Paper|12 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 2 Single Correct Answer)|25 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt((x-sinx)/(x+cos^(2)x)),"then "lim_(xtooo) f(x) is

Let f(x) lt 0 AA x in (-=oo, 0) and f (x) gt 0 AA x in (0,oo) also f (0)=o, Again f'(x) lt 0 AA x in (-oo, -1) and f '(x) gt AA x in (-1,oo) also f '(-1)=0 given lim _(x to oo) f (x)=0 and lim _(x to oo) f (x)=oo and function is twice differentiable. If f'(x) lt 0 AA x in (0,oo)and f'(0)=1 then number of solutions of equatin f (x)=x ^(2) is :

If g(x)=(x^(2)+2x+3) f(x),f(0)=5 and lim_(x to 0) (f(x-5))/(x)=4 , then g'(0) is equal to

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

If F (x) = {{:(-x^(2) + 1, x lt 0),(0,x = 0),(x^(2) + 1,x gt = 0):} , .then lim_(x to 0) f(x) is

If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxlt3):} then value of lim_(xto1)f(x)+lim_(xto2^(+))f(x) is

If f(x)={{:(mx^2+x+n,"," x lt 0),(nx +m ,"," 0 le x le 1),(2nx^3+x^2-2x+m,","x gt1):} and lim_(xto0)f(x) and lim_(xto1) f(x) exist then

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Exercise (Numerical Answer)
  1. Find the value of lim(x to 1) (1+sin pix)^(cos pix)

    Text Solution

    |

  2. ("lim")(xvecoo)((x^2+2x-1)/(2x^2-3x-2))^((2x+1)/(2x-1))i se q u a lto ...

    Text Solution

    |

  3. Find the value of lim(x to oo) (pi/4 - "tan"^(-1) (x+1)/(x+2)) .

    Text Solution

    |

  4. Find the value of |(lim( x to 1) (x^x-1)/(x log x )) /( lim( xto0) (lo...

    Text Solution

    |

  5. If lim( x to 2) (A sin (x-2) +B cos (x-2) +5)/(x^2-4)=1 , then |A-B| i...

    Text Solution

    |

  6. If (5x-2)/x lt f(x) lt (5x^2-4x)/x^2 and (sinx^2)/x lt g (x) lt (log (...

    Text Solution

    |

  7. If underset(xto0)lim[1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of l...

    Text Solution

    |

  8. If lim(x to 2) ((-ax+sin(x-2)+2a)/(x+sin (x-2)-2))^((2-x)/(sqrt2-sqrtx...

    Text Solution

    |

  9. Let m and n be two integers greater than 1. if lim(alpha to 0) ((e^(co...

    Text Solution

    |

  10. Let f(x)=lim( n to oo) (x^(2n-1) + ax^2 +bx)/(x^(2n) +1) . If f is con...

    Text Solution

    |

  11. Find the value of f(0) so that the function f(x)=1/24 (4^x-1)^3/(sin (...

    Text Solution

    |

  12. Find the value of f(0) so that the function f(x)=([log (1+x//12)-log (...

    Text Solution

    |

  13. Find the value of f(0) so that the function f(x)=1/8 (1-cos^2 x+sin^2 ...

    Text Solution

    |

  14. Find the value of f(1) so that the function f(x)=((root(3)x^2-(2x^(1//...

    Text Solution

    |

  15. Let f(x)=x^2 if x is rational and f(x)=1-x^2 if x is irrational then ...

    Text Solution

    |

  16. Let f(x)=(cos x -sinx)/(cos 2x)+ sin^2x , x ne pi/4 . The value of f(p...

    Text Solution

    |