Home
Class 12
MATHS
Find the value of f(0) so that the funct...

Find the value of f(0) so that the function `f(x)=1/24 (4^x-1)^3/(sin (x/4) log (1+x^2/3)(log 2)^3), x ne 0` is continuous in `R` is .

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) so that the function \[ f(x) = \frac{1}{24} \cdot \frac{(4^x - 1)^3}{\sin\left(\frac{x}{4}\right) \cdot \log\left(1 + \frac{x^2}{3}\right) \cdot (\log 2)^3} \] is continuous in \( \mathbb{R} \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches 0 is equal to \( f(0) \). ### Step 1: Find the limit as \( x \to 0 \) We start by calculating \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \left( \frac{1}{24} \cdot \frac{(4^x - 1)^3}{\sin\left(\frac{x}{4}\right) \cdot \log\left(1 + \frac{x^2}{3}\right) \cdot (\log 2)^3} \right). \] ### Step 2: Simplify the limit Since \( \frac{1}{24} \) and \( (\log 2)^3 \) are constants, we can factor them out of the limit: \[ \lim_{x \to 0} f(x) = \frac{1}{24 (\log 2)^3} \lim_{x \to 0} \frac{(4^x - 1)^3}{\sin\left(\frac{x}{4}\right) \cdot \log\left(1 + \frac{x^2}{3}\right)}. \] ### Step 3: Evaluate \( (4^x - 1)^3 \) Using the property \( \lim_{x \to 0} \frac{a^x - 1}{x} = \log a \): \[ \lim_{x \to 0} \frac{4^x - 1}{x} = \log 4. \] Thus, \[ \lim_{x \to 0} (4^x - 1) = x \cdot \log 4. \] So, \[ \lim_{x \to 0} (4^x - 1)^3 = \lim_{x \to 0} (x \cdot \log 4)^3 = (\log 4)^3 \cdot x^3. \] ### Step 4: Evaluate \( \sin\left(\frac{x}{4}\right) \) Using the property \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \): \[ \lim_{x \to 0} \sin\left(\frac{x}{4}\right) = \frac{x}{4}. \] ### Step 5: Evaluate \( \log\left(1 + \frac{x^2}{3}\right) \) Using the property \( \lim_{x \to 0} \frac{\log(1 + x)}{x} = 1 \): \[ \lim_{x \to 0} \log\left(1 + \frac{x^2}{3}\right) = \frac{x^2}{3}. \] ### Step 6: Substitute back into the limit Now substituting these limits back into our expression: \[ \lim_{x \to 0} f(x) = \frac{1}{24 (\log 2)^3} \cdot \frac{(\log 4)^3 \cdot x^3}{\left(\frac{x}{4}\right) \cdot \left(\frac{x^2}{3}\right)}. \] ### Step 7: Simplify the expression This simplifies to: \[ = \frac{1}{24 (\log 2)^3} \cdot \frac{(\log 4)^3 \cdot x^3}{\frac{x^3}{12}} = \frac{1}{24 (\log 2)^3} \cdot (\log 4)^3 \cdot 12. \] ### Step 8: Final simplification Thus, \[ \lim_{x \to 0} f(x) = \frac{12 \cdot (\log 4)^3}{24 \cdot (\log 2)^3} = \frac{(\log 4)^3}{2 \cdot (\log 2)^3}. \] Since \( \log 4 = 2 \log 2 \): \[ = \frac{(2 \log 2)^3}{2 \cdot (\log 2)^3} = \frac{8 (\log 2)^3}{2 (\log 2)^3} = 4. \] ### Conclusion Therefore, to make \( f(x) \) continuous at \( x = 0 \), we set: \[ f(0) = 4. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Questions for Previous Years AIEEE/JEE Main Papers|44 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Paper|12 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 2 Single Correct Answer)|25 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

The value of f(0) so that f(x) = ((4^(x)-1)^(3))/(sin(x/4)log(1+(x^(2))/3)) , x != 0 , is continuous everywhere in R, is

Find the value of f(0) so that the function f(x)=1/8 (1-cos^2 x+sin^2 x)/[sqrt(x^2+1)-1], x ne 0 is continuous .

Find the value of f(0) so that the function f(x)=([log (1+x//12)-log (1-x//8)])/x , x ne 0 is continuous on [0,8].

Find the value of f(1) so that the function f(x)=((root(3)x^2-(2x^(1//3)-1)))/(4(x-1)^2), x ne 1 is continuous at x=1.

The value of k(k gt 0) for which the function f(x)=(e^x-1)^4/(sin(x^2//k^2) log {1+(x^2//2)}), x ne 0 , f(0) =8 may be continuous function is

The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x a)log{(1+x^2 3)}),x!=0 12(log4)^3,x=0 may be continuous at x=0 is 1 (b) 2 (c) 3 (d) none of these

The value of f(0) so that the function f(x) = (log(sec^2 x))/(x sin x), x != 0 , is continuous at x = 0 is

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Exercise (Numerical Answer)
  1. Find the value of lim(x to 1) (1+sin pix)^(cos pix)

    Text Solution

    |

  2. ("lim")(xvecoo)((x^2+2x-1)/(2x^2-3x-2))^((2x+1)/(2x-1))i se q u a lto ...

    Text Solution

    |

  3. Find the value of lim(x to oo) (pi/4 - "tan"^(-1) (x+1)/(x+2)) .

    Text Solution

    |

  4. Find the value of |(lim( x to 1) (x^x-1)/(x log x )) /( lim( xto0) (lo...

    Text Solution

    |

  5. If lim( x to 2) (A sin (x-2) +B cos (x-2) +5)/(x^2-4)=1 , then |A-B| i...

    Text Solution

    |

  6. If (5x-2)/x lt f(x) lt (5x^2-4x)/x^2 and (sinx^2)/x lt g (x) lt (log (...

    Text Solution

    |

  7. If underset(xto0)lim[1+x+(f(x))/(x)]^(1//x)=e^(3), then the value of l...

    Text Solution

    |

  8. If lim(x to 2) ((-ax+sin(x-2)+2a)/(x+sin (x-2)-2))^((2-x)/(sqrt2-sqrtx...

    Text Solution

    |

  9. Let m and n be two integers greater than 1. if lim(alpha to 0) ((e^(co...

    Text Solution

    |

  10. Let f(x)=lim( n to oo) (x^(2n-1) + ax^2 +bx)/(x^(2n) +1) . If f is con...

    Text Solution

    |

  11. Find the value of f(0) so that the function f(x)=1/24 (4^x-1)^3/(sin (...

    Text Solution

    |

  12. Find the value of f(0) so that the function f(x)=([log (1+x//12)-log (...

    Text Solution

    |

  13. Find the value of f(0) so that the function f(x)=1/8 (1-cos^2 x+sin^2 ...

    Text Solution

    |

  14. Find the value of f(1) so that the function f(x)=((root(3)x^2-(2x^(1//...

    Text Solution

    |

  15. Let f(x)=x^2 if x is rational and f(x)=1-x^2 if x is irrational then ...

    Text Solution

    |

  16. Let f(x)=(cos x -sinx)/(cos 2x)+ sin^2x , x ne pi/4 . The value of f(p...

    Text Solution

    |