Home
Class 9
MATHS
In the given figure, prove that x=alpha+...

In the given figure, prove that `x=alpha+beta+gamma`.

Text Solution

Verified by Experts

Join B and D and produce BD to E.
Let `angleABD=p^(@),angleCBD=q^(@)and" let "angleADE=s^(@)andangleCDE=t^(@)`.
Then, `p+q=betaands+t=x`.
Now, side BD of `DeltaABD` has been produced to E.
`:.s=p+alpha" "....(i)`
Again, side BD of `DeltaCBD` has been produced to E.
`:.t=q+gamma`.
Adding the corresponding sides of (i) and (ii), we get
`s+t=(p+q)+alpha+gamma`
`impliesx=beta+alpha+gamma." "[:'s+t=xandp+q=beta]`
Hence, `x=alpha+beta+gamma`.
Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    RS AGGARWAL|Exercise Exercise 8|13 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise EXERCISE|16 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise MULTIPLE-CHOICE QUESTIONS (MCQ)|10 Videos
  • QUADRILATERALS

    RS AGGARWAL|Exercise Matching of Columns:|2 Videos
  • VOLUME AND SURFACE AREA OF SOLIDS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|73 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma,in(0,(pi)/(2)), then prove that (si(alpha+beta+gamma))/(sin alpha+sin beta+sin gamma)<1

alpha, beta, gamma are real number satisfying alpha+beta+gamma=pi . The minimum value of the given expression sin alpha+sin beta+sin gamma is

If alpha, beta, gamma be the zeros of the polynomial p(x) such that (alpha+beta+gamma) = 3, (alpha beta+beta gamma+gamma alpha) =- 10 and alpha beta gamma =- 24 then p(x) = ?

If a right angle be divided into three parts alpha,beta and gamma, prove that cot alpha=(tan beta+tan gamma)/(1-tan beta tan gamma)

If a right angle be divided into three parts alpha,beta and gamma, prove that cot alpha=(tan beta+tan gamma)/(1-tan beta tan gamma)

If alpha,beta,gamma are the roots of the equation x^(3)+qx+r=0 then find the equation whose roots are ( a )alpha+beta,beta+gamma,gamma+alpha(b)alpha beta,beta gamma,gamma alpha

If alpha,beta,gamma are the roots of the equation x^(3)+3x-2=0 then the equation whose roots are alpha(beta+gamma),beta(gamma+alpha),gamma(alpha+beta) is

If alpha,beta & gamma are the roots the equations x^(3)+px+q=0 then the value of the determinant [{:(,alpha,beta,gamma),(,beta,gamma,alpha),(,gamma,alpha,beta):}]