Home
Class 9
MATHS
8(3a-2b)^2-10(3a-2b)...

`8(3a-2b)^2-10(3a-2b)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the polynomial \( 8(3a-2b)^2 - 10(3a-2b) \), we will follow these steps: ### Step 1: Identify the common factor First, we can see that both terms in the expression share a common factor of \( (3a - 2b) \). ### Step 2: Factor out the common term We will factor out \( (3a - 2b) \) from the expression: \[ 8(3a-2b)^2 - 10(3a-2b) = (3a - 2b)(8(3a - 2b) - 10) \] ### Step 3: Simplify the expression inside the parentheses Now, we simplify the expression inside the parentheses: \[ 8(3a - 2b) - 10 \] Distributing \( 8 \): \[ = 24a - 16b - 10 \] ### Step 4: Write the final factored form Now we can write the complete factored form of the polynomial: \[ = (3a - 2b)(24a - 16b - 10) \] ### Step 5: Further factor if possible We can check if the second factor \( 24a - 16b - 10 \) can be factored further. Notice that we can factor out a \( 2 \): \[ = (3a - 2b)(2(12a - 8b - 5)) \] So the final factored form is: \[ = 2(3a - 2b)(12a - 8b - 5) \] ### Final Answer: The factorized form of the polynomial \( 8(3a-2b)^2 - 10(3a-2b) \) is: \[ 2(3a - 2b)(12a - 8b - 5) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3C|66 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Simplify (3a-2b)^2xx (3a+2b)^2

If (a)/(b)=(4)/(3), then (3a+2b)/(3a-2b)=?( a) -1 (b) 3 (c) 5(d)6

a(a+b)^3-3a^2b(a+b)

4(2a-3b)^(2)+8(2a-3b)

If 8(a+b)^3+(a-b)^3=(3a + b) (Aa^2+Cb^2+Bab) , then the value of (A+B-C) is : यदि 8(a+b)^3+(a-b)^3=(3a + b) (Aa^2+Cb^2+Bab) है, तो (A+B-C) का मान ज्ञात करें |

(log_(10)2=a,(log)_(10)3=bthen(log)_(0.72)(9*6) in terms of a and b is equal to (a) (2a+3b-1)/(5a+b-2)( b) (5a+b-1)/(3a+2b-2)(c)(3a+b-2)/(2a+3b-1) (d) (2a+5b-2)/(3a+b-1)