Home
Class 9
MATHS
Factorise : (2x-3)^2-8x+12...

Factorise : `(2x-3)^2-8x+12`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression `(2x - 3)^2 - 8x + 12`, we will follow these steps: ### Step 1: Expand the squared term First, we expand the term `(2x - 3)^2`. \[ (2x - 3)^2 = 4x^2 - 12x + 9 \] ### Step 2: Substitute back into the expression Now, we substitute this back into the original expression: \[ 4x^2 - 12x + 9 - 8x + 12 \] ### Step 3: Combine like terms Next, we combine the like terms: \[ 4x^2 - 12x - 8x + 9 + 12 = 4x^2 - 20x + 21 \] ### Step 4: Factor the quadratic expression Now we need to factor the quadratic expression \(4x^2 - 20x + 21\). We look for two numbers that multiply to \(4 \times 21 = 84\) and add to \(-20\). The numbers \(-14\) and \(-6\) fit this requirement. We can rewrite the expression as: \[ 4x^2 - 14x - 6x + 21 \] ### Step 5: Group the terms Now we group the terms: \[ (4x^2 - 14x) + (-6x + 21) \] ### Step 6: Factor out the common factors From the first group \(4x^2 - 14x\), we can factor out \(2x\): \[ 2x(2x - 7) \] From the second group \(-6x + 21\), we can factor out \(-3\): \[ -3(2x - 7) \] ### Step 7: Combine the factors Now we can combine the two groups: \[ 2x(2x - 7) - 3(2x - 7) = (2x - 3)(2x - 7) \] ### Final Result Thus, the factorised form of the expression is: \[ (2x - 3)(2x - 7) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3C|66 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Factorize (2x-3)^2-8x+12 .

Factorise : x-8xy^(3)

Factorise : 40+3x-x^2

Factorise : x^2-4x+3

Factorise: 2x^3-x^2-13x-6

Factorise: x ^(2) - 4x -12

Factorise: (i) 12 x^2-7x+1 (ii) 2x^2+7x+3 (iii) 6x^2+5x-6 (iv) 3x^2-x-4

Factorise: x^(2) + 8x +15

Factorise 12x^(2)-7x+1