Home
Class 9
MATHS
ab(x^(2)+y^(2))-xy(a^(2)+b^(2))...

`ab(x^(2)+y^(2))-xy(a^(2)+b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(bx-ay)(ax-by)`
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3C|66 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Factorise the following expressions : (i) ax-ay+bx-by " " (ii) x^(2)-x-ax+a " " (iii) x^(4)+x^(3)+x^(2)+x (iv) 16(a+b)^(2)-4a-4b " " (v) x^(2)+(1)/(x^(2))+2-3x-(3)/(x) " " (vi) x^(2)-((a)/(b)+(b)/(a))x+1 (vii) x^(2)+(a-(1)/(a))x-1 " " (viii)ab(x^(2)+y^(2)+xy(a^(2)+b^(2)) " "(ix) (ax+by)^(2)+(bx-ay)^(2)

x-x^(2)y+xy^(2)-y

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)

If a=(x)/(x+y) and b=(y)/(x-y), then (ab)/(a+b) is equal to (a) (xy)/(x^(2)+y^(2)) (b) (x^(2)+y^(2))/(xy)( c) (x)/(x+y) (d) ((y)/(x+y))^(2)

If cos^(-1)(x/a)+cos^(-1)(y/b)=theta ,then the value of sqrt((x^(2))/(a^(2))+(y^(2))/(b^(2))-(2xy)/(ab)cos theta) is equal to

The angle of intersection of the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and x^(2)+y^(2)=ab, is

Factorize each of the following expressions: x^(2)+2xy+y^(2)-a^(2)+2ab-b^(2)

Factorize each of the following expressions: x^(2)+2xy+y^(2)-a^(2)+2ab-b^(2)25x^(2)-10x+1-36y^(2)1-2ab-(a^(2)+b^(2))

Add: (i) 3a - 2b + 5c, 2a + 5b - 7c, -a - b + c (ii) 8a - 6ab + 5b, -6a - ab - 8b, -4a + 2ab + 3b (iii) 2x^(3) - 3x^(2) + 7x - 8, -5x^(3) + 2x^(2) - 4x + 1, 3 - 6x + 5x^(2) - x^(3) (iv) 2x^(2) - 8xy + 7y^(2) - 8xy^(2), 2xy^(2) + 6xy - y^(2) + 3x^(2), 4y^(2) - xy - x^(2) + xy^(2) (v) x^(3) + y^(3) - z^(3) + 3xyz, - x^(3) + y^(3) + z^(3) - 6xyz, - x^(3) - y^(3) - z^(3) - 8xyz (vi) 2 + x - x^(2) + 6x^(3). -6 - 2x + 4x^(2) - 3x^(3). 2 + x^(2). 3 - x^(3) + 4x - 2x^(2)