Home
Class 9
MATHS
Expand (i) (a+2b+5c)^2 (ii) (2a+b+c...

Expand
(i) `(a+2b+5c)^2`
(ii) ` (2a+b+c)^2`
(iii) ` (a-2b-3c)^2`

Text Solution

AI Generated Solution

The correct Answer is:
Let's expand the given expressions step by step. ### (i) Expand `(a + 2b + 5c)^2` 1. **Identify the terms**: Here, we have \( a \), \( 2b \), and \( 5c \). 2. **Use the formula**: The expansion of \( (x + y + z)^2 \) is given by \( x^2 + y^2 + z^2 + 2xy + 2yz + 2zx \). 3. **Apply the formula**: - \( x = a \) - \( y = 2b \) - \( z = 5c \) - Calculate \( x^2 = a^2 \) - Calculate \( y^2 = (2b)^2 = 4b^2 \) - Calculate \( z^2 = (5c)^2 = 25c^2 \) - Calculate \( 2xy = 2(a)(2b) = 4ab \) - Calculate \( 2yz = 2(2b)(5c) = 20bc \) - Calculate \( 2zx = 2(a)(5c) = 10ac \) 4. **Combine all the terms**: \[ (a + 2b + 5c)^2 = a^2 + 4b^2 + 25c^2 + 4ab + 20bc + 10ac \] ### (ii) Expand `(2a + b + c)^2` 1. **Identify the terms**: Here, we have \( 2a \), \( b \), and \( c \). 2. **Use the formula**: Again, we will use the same expansion formula. 3. **Apply the formula**: - \( x = 2a \) - \( y = b \) - \( z = c \) - Calculate \( x^2 = (2a)^2 = 4a^2 \) - Calculate \( y^2 = b^2 \) - Calculate \( z^2 = c^2 \) - Calculate \( 2xy = 2(2a)(b) = 4ab \) - Calculate \( 2yz = 2(b)(c) = 2bc \) - Calculate \( 2zx = 2(2a)(c) = 4ac \) 4. **Combine all the terms**: \[ (2a + b + c)^2 = 4a^2 + b^2 + c^2 + 4ab + 2bc + 4ac \] ### (iii) Expand `(a - 2b - 3c)^2` 1. **Identify the terms**: Here, we have \( a \), \( -2b \), and \( -3c \). 2. **Use the formula**: We will use the same expansion formula. 3. **Apply the formula**: - \( x = a \) - \( y = -2b \) - \( z = -3c \) - Calculate \( x^2 = a^2 \) - Calculate \( y^2 = (-2b)^2 = 4b^2 \) - Calculate \( z^2 = (-3c)^2 = 9c^2 \) - Calculate \( 2xy = 2(a)(-2b) = -4ab \) - Calculate \( 2yz = 2(-2b)(-3c) = 12bc \) - Calculate \( 2zx = 2(a)(-3c) = -6ac \) 4. **Combine all the terms**: \[ (a - 2b - 3c)^2 = a^2 + 4b^2 + 9c^2 - 4ab + 12bc - 6ac \] ### Summary of Results: 1. \( (a + 2b + 5c)^2 = a^2 + 4b^2 + 25c^2 + 4ab + 20bc + 10ac \) 2. \( (2a + b + c)^2 = 4a^2 + b^2 + c^2 + 4ab + 2bc + 4ac \) 3. \( (a - 2b - 3c)^2 = a^2 + 4b^2 + 9c^2 - 4ab + 12bc - 6ac \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3E|10 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3C|66 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b-5c)^(2) " " (iv) (2x+(1)/(x)+1)^(2) .

Expand : (i) (4a-5b)^(3) " " (ii) (a+2b)^(3)

Expand (i) (2a-5b-7c)^2 (ii) ( -3a+4b-5c)^2 (iii) ((1)/(2)a-(1)/(4)b+2)^2

Expand the following (i) (4a-b+ac)^(2) (ii) (3a-5b-c)^(2) (iii) (-x+2y-3z)^(2)

Expand : (i) (3a-5b)^(2) " " (ii) (a+(1)/(a))^(2) " " (iii) (2x-(a)/(2x))^(2) .

Expand quad (4a-2b-3c)^(2)

Expand (4a-2b-3c)^(2) .

Expand : (4a+3b+2c)^2 .

Evaluate : (i) (a+6b)^(2) " " (ii) (3x-4y)^(2) " " (iii) (2a-b+c)^(2)

Add : 3a ( 2b + 5c), 3c (2a + 2b)