Home
Class 9
MATHS
Expand (i) (3x+2)^3 (ii) (3a+(1)/(4b...

Expand
(i) `(3x+2)^3`
(ii) `(3a+(1)/(4b))^3`
(iii) ` (1+(2)/(3)a)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expressions given in the question, we will use the formula for the cube of a binomial, which is: \[ (a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2 \] Now, let's solve each part step by step. ### (i) Expand \((3x + 2)^3\) 1. **Identify \(a\) and \(b\)**: - Here, \(a = 3x\) and \(b = 2\). 2. **Calculate \(a^3\)**: \[ (3x)^3 = 27x^3 \] 3. **Calculate \(b^3\)**: \[ 2^3 = 8 \] 4. **Calculate \(3a^2b\)**: \[ 3(3x)^2(2) = 3(9x^2)(2) = 54x^2 \] 5. **Calculate \(3ab^2\)**: \[ 3(3x)(2^2) = 3(3x)(4) = 36x \] 6. **Combine all the terms**: \[ (3x + 2)^3 = 27x^3 + 54x^2 + 36x + 8 \] ### Final Answer for (i): \[ (3x + 2)^3 = 27x^3 + 54x^2 + 36x + 8 \] --- ### (ii) Expand \((3a + \frac{1}{4b})^3\) 1. **Identify \(a\) and \(b\)**: - Here, \(a = 3a\) and \(b = \frac{1}{4b}\). 2. **Calculate \(a^3\)**: \[ (3a)^3 = 27a^3 \] 3. **Calculate \(b^3\)**: \[ \left(\frac{1}{4b}\right)^3 = \frac{1}{64b^3} \] 4. **Calculate \(3a^2b\)**: \[ 3(3a)^2\left(\frac{1}{4b}\right) = 3(9a^2)\left(\frac{1}{4b}\right) = \frac{27a^2}{4b} \] 5. **Calculate \(3ab^2\)**: \[ 3(3a)\left(\frac{1}{4b}\right)^2 = 3(3a)\left(\frac{1}{16b^2}\right) = \frac{9a}{16b^2} \] 6. **Combine all the terms**: \[ (3a + \frac{1}{4b})^3 = 27a^3 + \frac{1}{64b^3} + \frac{27a^2}{4b} + \frac{9a}{16b^2} \] ### Final Answer for (ii): \[ (3a + \frac{1}{4b})^3 = 27a^3 + \frac{1}{64b^3} + \frac{27a^2}{4b} + \frac{9a}{16b^2} \] --- ### (iii) Expand \((1 + \frac{2}{3}a)^3\) 1. **Identify \(a\) and \(b\)**: - Here, \(a = 1\) and \(b = \frac{2}{3}a\). 2. **Calculate \(a^3\)**: \[ 1^3 = 1 \] 3. **Calculate \(b^3\)**: \[ \left(\frac{2}{3}a\right)^3 = \frac{8}{27}a^3 \] 4. **Calculate \(3a^2b\)**: \[ 3(1^2)\left(\frac{2}{3}a\right) = 3(1)\left(\frac{2}{3}a\right) = 2a \] 5. **Calculate \(3ab^2\)**: \[ 3(1)\left(\frac{2}{3}a\right)^2 = 3(1)\left(\frac{4}{9}a^2\right) = \frac{4}{3}a^2 \] 6. **Combine all the terms**: \[ (1 + \frac{2}{3}a)^3 = 1 + \frac{8}{27}a^3 + 2a + \frac{4}{3}a^2 \] ### Final Answer for (iii): \[ (1 + \frac{2}{3}a)^3 = 1 + \frac{8}{27}a^3 + 2a + \frac{4}{3}a^2 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3D|7 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Expand (i) (5a-3b)^3 (ii) (3x-(5)/(x))^3 (iii) ((4)/(5)a-2)^3

Expand (i) (4a+5b)^3 (ii) (3a-2b)^3

Knowledge Check

  • . (i) i= 2 A (ii) i_1 = (10)/(3) A (iii) i_2 = - (4)/(3) A .

    A
    (i),(ii)
    B
    (ii),(iii)
    C
    (i),(iii)
    D
    all
  • Similar Questions

    Explore conceptually related problems

    Expand : (i) (3a-5b)^(2) " " (ii) (a+(1)/(a))^(2) " " (iii) (2x-(a)/(2x))^(2) .

    Expand (i) (3x - 2y)^(2) (ii) ((3)/(4) p - (5)/(6) q)^(2)

    Expand : (i) (4a-5b)^(3) " " (ii) (a+2b)^(3)

    Expand : (i) (2x + 5y)^(2) (ii) ((2)/(3) a + (3)/(4) b)^(2)

    Expand the following (i) (3a-2b)^(3) (ii) ((1)/(x)+(y)/(3))^(3) (iii) (4-(1)/(3x))^(2)

    Expand : (i) (2x+3y)^(3) " " (ii) (5y-3x)^(3) " " (iii) (2a+3b)^(3) .

    Expand (i) (2a-5b-7c)^2 (ii) ( -3a+4b-5c)^2 (iii) ((1)/(2)a-(1)/(4)b+2)^2