Home
Class 9
MATHS
Expand (i) (2a-5b-7c)^2 (ii) ( -3a...

Expand
(i) ` (2a-5b-7c)^2`
(ii) ` ( -3a+4b-5c)^2`
(iii) `((1)/(2)a-(1)/(4)b+2)^2`

Text Solution

AI Generated Solution

The correct Answer is:
Let's expand the given expressions step by step. ### (i) Expand \( (2a - 5b - 7c)^2 \) 1. **Identify the terms**: Here, \( a = 2a \), \( b = -5b \), and \( c = -7c \). 2. **Apply the identity**: Use the identity \( (A + B + C)^2 = A^2 + B^2 + C^2 + 2AB + 2BC + 2CA \). 3. **Calculate each term**: - \( A^2 = (2a)^2 = 4a^2 \) - \( B^2 = (-5b)^2 = 25b^2 \) - \( C^2 = (-7c)^2 = 49c^2 \) - \( 2AB = 2(2a)(-5b) = -20ab \) - \( 2BC = 2(-5b)(-7c) = 70bc \) - \( 2CA = 2(-7c)(2a) = -28ac \) 4. **Combine the results**: \[ (2a - 5b - 7c)^2 = 4a^2 + 25b^2 + 49c^2 - 20ab + 70bc - 28ac \] ### (ii) Expand \( (-3a + 4b - 5c)^2 \) 1. **Identify the terms**: Here, \( A = -3a \), \( B = 4b \), and \( C = -5c \). 2. **Apply the identity**: Use the same identity as above. 3. **Calculate each term**: - \( A^2 = (-3a)^2 = 9a^2 \) - \( B^2 = (4b)^2 = 16b^2 \) - \( C^2 = (-5c)^2 = 25c^2 \) - \( 2AB = 2(-3a)(4b) = -24ab \) - \( 2BC = 2(4b)(-5c) = -40bc \) - \( 2CA = 2(-5c)(-3a) = 30ac \) 4. **Combine the results**: \[ (-3a + 4b - 5c)^2 = 9a^2 + 16b^2 + 25c^2 - 24ab - 40bc + 30ac \] ### (iii) Expand \( \left( \frac{1}{2}a - \frac{1}{4}b + 2 \right)^2 \) 1. **Identify the terms**: Here, \( A = \frac{1}{2}a \), \( B = -\frac{1}{4}b \), and \( C = 2 \). 2. **Apply the identity**: Again, use the same identity. 3. **Calculate each term**: - \( A^2 = \left(\frac{1}{2}a\right)^2 = \frac{1}{4}a^2 \) - \( B^2 = \left(-\frac{1}{4}b\right)^2 = \frac{1}{16}b^2 \) - \( C^2 = (2)^2 = 4 \) - \( 2AB = 2\left(\frac{1}{2}a\right)\left(-\frac{1}{4}b\right) = -\frac{1}{4}ab \) - \( 2BC = 2\left(-\frac{1}{4}b\right)(2) = -\frac{1}{4}b \) - \( 2CA = 2(2)\left(\frac{1}{2}a\right) = 2a \) 4. **Combine the results**: \[ \left( \frac{1}{2}a - \frac{1}{4}b + 2 \right)^2 = \frac{1}{4}a^2 + \frac{1}{16}b^2 + 4 - \frac{1}{4}ab - \frac{1}{2}b + 2a \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3E|10 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3C|66 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Expand : (i) (4a-5b)^(3) " " (ii) (a+2b)^(3)

Expand : (i) (3a-5b)^(2) " " (ii) (a+(1)/(a))^(2) " " (iii) (2x-(a)/(2x))^(2) .

Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b-5c)^(2) " " (iv) (2x+(1)/(x)+1)^(2) .

Expand (i) (a+2b+5c)^2 (ii) (2a+b+c)^2 (iii) (a-2b-3c)^2

Expand the following (i) (4a-b+ac)^(2) (ii) (3a-5b-c)^(2) (iii) (-x+2y-3z)^(2)

Expand : (i) (2x + 5y)^(2) (ii) ((2)/(3) a + (3)/(4) b)^(2)

Expand (i) (3x+2)^3 (ii) (3a+(1)/(4b))^3 (iii) (1+(2)/(3)a)^3

Evaluate : (i) (a+6b)^(2) " " (ii) (3x-4y)^(2) " " (iii) (2a-b+c)^(2)

Find the values of a and b, when: (i) (a+3,b-2)=(5,1) (ii) (a+b,2b-3)=(4,-5) (iii) ((a)/(3)+1,b-(1)/(3))=((5)/(3),(2)/(3)) (iv) (a-2,2b+1)=(b-1,a+2)

Find the product : (i) (x+3)(x^(2)-3x+9) " " (ii) (7+5b)(49-35b+25b^(2)) (iii) (5a+(1)/(2)) (25a^(2)-(5a)/(2)+(1)/(4)) " " (iv) (a+b-2)[a^(2)+b^(2)+4(a+b)+4] .