Home
Class 9
MATHS
Factorise 9x^2+16y^2+4z^2-24xy+16yz-12x...

Factorise `9x^2+16y^2+4z^2-24xy+16yz-12xz`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the polynomial \( 9x^2 + 16y^2 + 4z^2 - 24xy + 16yz - 12xz \), we can follow these steps: ### Step 1: Identify the structure of the polynomial We start by rewriting the polynomial in a more recognizable form. Notice that it consists of squares and products of variables. ### Step 2: Group the terms We can rearrange the polynomial as follows: \[ 9x^2 - 24xy + 16y^2 + 4z^2 - 12xz + 16yz \] This helps us see the quadratic nature of the terms involving \(x\), \(y\), and \(z\). ### Step 3: Rewrite the quadratic terms We can express the first three terms \(9x^2 - 24xy + 16y^2\) as a perfect square: \[ 9x^2 - 24xy + 16y^2 = (3x - 4y)^2 \] ### Step 4: Rewrite the remaining terms Now, we look at the remaining terms \(4z^2 - 12xz + 16yz\). We can express this as: \[ 4z^2 - 12xz + 16yz = (2z - 3x + 4y)^2 \] ### Step 5: Combine the factored forms Now we can combine the factored forms: \[ (3x - 4y - 2z)^2 \] ### Final Step: Write the final factorized form Thus, the complete factorization of the polynomial is: \[ (3x - 4y - 2z)^2 \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3E|10 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3C|66 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Factorise 49x^(2) - 16y^(2) .

Factorize 9x^2+4y^2+16z^2+12xy-16yz-24xz .

Factorise 16x^2+4y^2+9z^2-16xy-12yz+24xz

Factorise 4x^(2)+y^(2)+z^(2)-4xy-3yz+4xz

Facorise the following (i) 9x^(2)+4y^(2)+16z^(2)+12xy-16yz-24xz (ii) 25x^(2)+16y^(2)+4z^(2)-40xy+16yz-20xz (iii) 16x^(2)+4y^(2)+9z^(2)-16xy-12yz+24xz

(a) Factorise : 9x^(2) - 24 xy + 16y^(2) (b) Factorise : 25x^(2) + (1)/(25x^(2)) + 2

25x^2+4y^2+9z^2-20xy-12yz+30xz

Factorise :x^(2)+xy+xz+yz

Factorise: 4x ^(2) + 9y^(2) + 12 xy