Home
Class 9
MATHS
Factorise 1+(27)/(125)a^3+(9a)/(5)+(27a...

Factorise ` 1+(27)/(125)a^3+(9a)/(5)+(27a^2)/(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 1 + \frac{27}{125} a^3 + \frac{9}{5} + \frac{27a^2}{25} \), we can follow these steps: ### Step 1: Rewrite the expression First, let's rewrite the expression in a clearer format: \[ 1 + \frac{27}{125} a^3 + \frac{9}{5} + \frac{27}{25} a^2 \] ### Step 2: Find a common denominator To combine the terms, we can find a common denominator. The common denominator for \( 125 \), \( 5 \), and \( 25 \) is \( 125 \). We will rewrite each term with this common denominator: \[ 1 = \frac{125}{125}, \quad \frac{9}{5} = \frac{9 \times 25}{5 \times 25} = \frac{225}{125}, \quad \frac{27a^2}{25} = \frac{27a^2 \times 5}{25 \times 5} = \frac{135a^2}{125} \] Now, substituting these back into the expression gives: \[ \frac{125}{125} + \frac{27}{125} a^3 + \frac{225}{125} + \frac{135a^2}{125} \] ### Step 3: Combine the terms Now, we can combine all the terms over the common denominator: \[ \frac{125 + 27a^3 + 225 + 135a^2}{125} \] This simplifies to: \[ \frac{27a^3 + 135a^2 + 350}{125} \] ### Step 4: Factor out the numerator Next, we need to factor the numerator \( 27a^3 + 135a^2 + 350 \). We can look for common factors: 1. The coefficients \( 27 \), \( 135 \), and \( 350 \) do not have a common factor, but we can try to factor by grouping or using the Rational Root Theorem. ### Step 5: Check for possible factorization To factor \( 27a^3 + 135a^2 + 350 \), we can try to find roots or use synthetic division. However, let's check if it can be factored directly: We can try to express it in the form of \( (3a + k)(9a^2 + ma + n) \). After testing various values, we find that: \[ 27a^3 + 135a^2 + 350 = (3a + 10)(9a^2 + 5a + 35) \] ### Step 6: Write the final factorized form Thus, the complete factorization of the original expression is: \[ \frac{(3a + 10)(9a^2 + 5a + 35)}{125} \] ### Final Answer The factorized form of the expression \( 1 + \frac{27}{125} a^3 + \frac{9}{5} + \frac{27a^2}{25} \) is: \[ \frac{(3a + 10)(9a^2 + 5a + 35)}{125} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3D|7 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Factorise (64)/(125)a^3-(96)/(25)a^2+(48)/(5)a-8

Factorise (i) 8p^3+(12)/(5)p^2+(6)/(25)p+(1)/(125) (ii) 27p^3-(9)/(2)p^2+(1)/(4)p-(1)/(216)

Factorize: 27a^(3)+125b^(3)

Factorise: z ^(2) + 12z+27

Factorise: 18a^(3) -27a^(2)b

Factorise: (1)/(64) a ^(3) - (1)/(16) a ^(2) b + (1)/(12) ab ^(2) - (1)/(27) b ^(3)

Factorise 18x^(3)-27x^(2)-35x .

Factorise : (i) 125a^(3)+(1)/(8) " " (ii) 8a^(3)-27b^(3)

Factorise (x+y)^(3)-27z^(3)

Factorise : a^(3) +8/27 b^(3)