Home
Class 9
MATHS
Factorise (64)/(125)a^3-(96)/(25)a^2+(4...

Factorise `(64)/(125)a^3-(96)/(25)a^2+(48)/(5)a-8`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the polynomial \(\frac{64}{125}a^3 - \frac{96}{25}a^2 + \frac{48}{5}a - 8\), we can follow these steps: ### Step 1: Rewrite the terms in a more manageable form We can express the coefficients as cubes: \[ \frac{64}{125} = \left(\frac{4}{5}\right)^3 \quad \text{and} \quad 8 = 2^3 \] Thus, we can rewrite the polynomial as: \[ \left(\frac{4}{5}\right)^3 a^3 - 2^3 - \frac{96}{25}a^2 + \frac{48}{5}a \] ### Step 2: Identify the cube terms Now we can rewrite the first and last terms: \[ \left(\frac{4a}{5}\right)^3 - 2^3 - \frac{96}{25}a^2 + \frac{48}{5}a \] ### Step 3: Factor out common terms Next, we can factor out \(-\frac{24a}{5}\) from the remaining terms: \[ \left(\frac{4a}{5}\right)^3 - 2^3 - \frac{24a}{5} \left(4a/5 - 2\right) \] ### Step 4: Recognize the difference of cubes Now we have: \[ \left(\frac{4a}{5}\right)^3 - 2^3 - \frac{24a}{5} \left(4a/5 - 2\right) \] This can be recognized as a difference of cubes: \[ A^3 - B^3 - 3AB(A - B) \] where \(A = \frac{4a}{5}\) and \(B = 2\). ### Step 5: Apply the difference of cubes formula Using the formula \(A^3 - B^3 = (A - B)(A^2 + AB + B^2)\), we can factor: \[ \left(\frac{4a}{5} - 2\right)\left(\left(\frac{4a}{5}\right)^2 + \left(\frac{4a}{5}\cdot 2\right) + 2^2\right) \] ### Step 6: Simplify the expression Now we can simplify the second factor: \[ \left(\frac{4a}{5}\right)^2 = \frac{16a^2}{25}, \quad \left(\frac{4a}{5}\cdot 2\right) = \frac{8a}{5}, \quad \text{and} \quad 2^2 = 4 \] Thus, the second factor becomes: \[ \frac{16a^2}{25} + \frac{8a}{5} + 4 \] ### Step 7: Combine the factors The complete factorization is: \[ \left(\frac{4a}{5} - 2\right)\left(\frac{16a^2}{25} + \frac{8a}{5} + 4\right) \] ### Final Answer The factorised form of the polynomial is: \[ \left(\frac{4a}{5} - 2\right)\left(\frac{16a^2}{25} + \frac{8a}{5} + 4\right) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3D|7 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Factorize: (64)/(125)x^(3)-8-(96)/(25)x^(2)+(48)/(5)x

Factorise 1+(27)/(125)a^3+(9a)/(5)+(27a^2)/(25)

Factorise: 64-x ^(2)

Factorise (i) 8p^3+(12)/(5)p^2+(6)/(25)p+(1)/(125) (ii) 27p^3-(9)/(2)p^2+(1)/(4)p-(1)/(216)

Factorise 8x^(2)y^(3)-x^(5)

Factorise: 3x ^(2)-48

Factorise :1-64a^(3)-12a+48a^(2)

Factorise: 48a^(2)-243b^(2)

Factorise : (i) 125a^(3)+(1)/(8) " " (ii) 8a^(3)-27b^(3)

factorise x^(6)+5x^(3)+8