Home
Class 9
MATHS
Factorise , a^3-(1)/(a^3) -2a+(2)/(a)...

Factorise , `a^3-(1)/(a^3) -2a+(2)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^3 - \frac{1}{a^3} - 2a + \frac{2}{a} \), we can follow these steps: ### Step 1: Rewrite the expression We can rewrite the expression by grouping the terms: \[ a^3 - \frac{1}{a^3} - 2a + \frac{2}{a} = \left(a^3 - \frac{1}{a^3}\right) + \left(-2a + \frac{2}{a}\right) \] ### Step 2: Factor the first part using the difference of cubes Recall the formula for the difference of cubes: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] Here, let \( x = a \) and \( y = \frac{1}{a} \). Thus, \[ a^3 - \frac{1}{a^3} = \left(a - \frac{1}{a}\right)\left(a^2 + a \cdot \frac{1}{a} + \left(\frac{1}{a}\right)^2\right) \] This simplifies to: \[ a^3 - \frac{1}{a^3} = \left(a - \frac{1}{a}\right)\left(a^2 + 1 + \frac{1}{a^2}\right) \] ### Step 3: Factor the second part Now, we can factor the second part: \[ -2a + \frac{2}{a} = -2\left(a - \frac{1}{a}\right) \] ### Step 4: Combine the factors Now we can combine the two parts: \[ \left(a - \frac{1}{a}\right)\left(a^2 + 1 + \frac{1}{a^2}\right) - 2\left(a - \frac{1}{a}\right) \] Factoring out \( \left(a - \frac{1}{a}\right) \): \[ = \left(a - \frac{1}{a}\right)\left(a^2 + 1 + \frac{1}{a^2} - 2\right) \] ### Step 5: Simplify the expression inside the parentheses Now simplify the expression inside the parentheses: \[ a^2 + 1 + \frac{1}{a^2} - 2 = a^2 - 1 + \frac{1}{a^2} \] This can be rewritten as: \[ = \left(a^2 - 1\right) + \frac{1}{a^2} = (a - 1)(a + 1) + \frac{1}{a^2} \] ### Final Step: Write the complete factorization Thus, the complete factorization of the original expression is: \[ = \left(a - \frac{1}{a}\right)\left(a^2 - 1 + \frac{1}{a^2}\right) \] ### Final Answer The final factorized form is: \[ \left(a - \frac{1}{a}\right)\left(a^2 + 1 + \frac{1}{a^2} - 2\right) \]

To factorise the expression \( a^3 - \frac{1}{a^3} - 2a + \frac{2}{a} \), we can follow these steps: ### Step 1: Rewrite the expression We can rewrite the expression by grouping the terms: \[ a^3 - \frac{1}{a^3} - 2a + \frac{2}{a} = \left(a^3 - \frac{1}{a^3}\right) + \left(-2a + \frac{2}{a}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3E|10 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Factorise: x ^(3) + (1)/(x ^(3)) - 2

Factorise : a^3+a-3a^2 -3

Factorise: (1)/(64) a ^(3) - (1)/(16) a ^(2) b + (1)/(12) ab ^(2) - (1)/(27) b ^(3)

Factorise: 3x ^(2)-48

Factorise : 8x^3 - (2x-y)^3

Factorise: 2n^2 + 3n

Factorise : x^2-4x+3

Factorise a^3-b^3+1+3ab .

Factorise : a^(3)(1+m)^(3)-((al)/(3)+(2am)/(3))^(3)-((2al)/(3)+(am) )/(3))^(3)