Home
Class 9
MATHS
2a^3+16b^3-5a-10b...

`2a^3+16b^3-5a-10b`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the polynomial \(2a^3 + 16b^3 - 5a - 10b\), we will follow these steps: ### Step 1: Group the terms We can group the terms in pairs: \[ (2a^3 + 16b^3) + (-5a - 10b) \] ### Step 2: Factor out the common factors From the first group \(2a^3 + 16b^3\), we can factor out a 2: \[ 2(a^3 + 8b^3) \] From the second group \(-5a - 10b\), we can factor out \(-5\): \[ -5(a + 2b) \] So, we rewrite the expression as: \[ 2(a^3 + 8b^3) - 5(a + 2b) \] ### Step 3: Recognize the sum of cubes The term \(a^3 + 8b^3\) can be factored using the sum of cubes formula: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] Here, \(x = a\) and \(y = 2b\). Thus: \[ a^3 + (2b)^3 = (a + 2b)(a^2 - 2ab + 4b^2) \] ### Step 4: Substitute back into the expression Substituting this back into our expression, we have: \[ 2((a + 2b)(a^2 - 2ab + 4b^2)) - 5(a + 2b) \] ### Step 5: Factor out the common binomial factor Now, we can see that \((a + 2b)\) is a common factor: \[ (a + 2b)(2(a^2 - 2ab + 4b^2) - 5) \] ### Step 6: Final expression Thus, the factored form of the polynomial \(2a^3 + 16b^3 - 5a - 10b\) is: \[ (a + 2b)(2a^2 - 4ab + 8b^2 - 5) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3E|10 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Add the following expressions: (i) x^3-2x^2y+3x y^2-y^3,\ 2x^3-5x y^2+3x^2y-4y^3 (ii) a^2-2a^3b+3a b^3+4a^2b^2+3b^4,-2a^4-5a b^3+7a^3b-6a^2b^2+b^4

Factorize :27a^(3)+(1)/(64b^(3))+(27a^(2))/(4b)+(9a)/(16b^(2))

If (10a^3 + 4b^3) : (11a^3 - 15b^3 =7:5, then (3a + 5b) : (9a - 2b)=? यदि (10a^3 + 4b^3) : (11a^3 - 15b^3 =7:5 है, तो (3a + 5b) : (9a - 2b)=?

Factorize: 9-a^(6)+2a^(3)b^(3)-b^(6)x^(16)-y^(16)+x^(8)+y^(8)(p+q)^(2)-(a-b)^(2)+p+q-a+b

If 9a^2+16b^2+c^2+25= 24(a+b) , then the value of (3a+4b+5c) is : यदि 9a^2+16b^2+c^2+25= 24(a+b) , है, तो (3a+4b+5c) का मान ज्ञात करें |