Home
Class 9
MATHS
x^3-3x^2+3x+7...

`x^3-3x^2+3x+7`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the polynomial \( x^3 - 3x^2 + 3x + 7 \), we can follow these steps: ### Step 1: Identify the structure We notice that the polynomial resembles the form of a cubic expression. We can use the identity for the sum and difference of cubes. ### Step 2: Rewrite the polynomial We can rewrite the polynomial as: \[ x^3 - 3x^2 + 3x + 7 = x^3 - 3x^2 + 3x + 1 + 6 \] This allows us to group the terms as: \[ (x^3 - 3x^2 + 3x + 1) + 6 \] ### Step 3: Recognize the cubic form The first part, \( x^3 - 3x^2 + 3x + 1 \), can be recognized as: \[ x^3 - 3(1)x^2 + 3(1)x + 1 \] This matches the form \( A^3 - 3A^2B + 3AB^2 + B^3 \) where \( A = x \) and \( B = 1 \). ### Step 4: Factor using the identity Using the identity for the sum of cubes, we can factor: \[ x^3 - 3x^2 + 3x + 1 = (x - 1)^3 \] Thus, we have: \[ (x - 1)^3 + 6 \] ### Step 5: Final expression Now, we can write the entire polynomial as: \[ (x - 1)^3 + 6 \] This is the factored form of the polynomial. ### Step 6: Conclusion The polynomial \( x^3 - 3x^2 + 3x + 7 \) can be expressed as: \[ (x - 1)^3 + 6 \]

To factorize the polynomial \( x^3 - 3x^2 + 3x + 7 \), we can follow these steps: ### Step 1: Identify the structure We notice that the polynomial resembles the form of a cubic expression. We can use the identity for the sum and difference of cubes. ### Step 2: Rewrite the polynomial We can rewrite the polynomial as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3E|10 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : A - B

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : A + B

The expression 2x^(3)-3x^(2)+4x-7 is an algebraic expression consisting of four terms, namely,2x^(3),-3x^(2)+4x-7 is an algebraic expression consisiting of four terms,namely,2x^(3)-3x^(2),4x and -7

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : 2A + 3B

If A = 3x^(2) + 2x - 7 and B = 7x^(3) - 3x + 4 , then find : 2A - 3B