Home
Class 9
MATHS
(x+2)^3+(x-2)^3...

`(x+2)^3+(x-2)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((x+2)^3 + (x-2)^3\), we can use the formula for the sum of cubes. The formula states that: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] In our case, we can let: - \(A = (x + 2)\) - \(B = (x - 2)\) ### Step 1: Identify A and B We have: \[ A = (x + 2) \quad \text{and} \quad B = (x - 2) \] ### Step 2: Calculate A + B Now, we calculate \(A + B\): \[ A + B = (x + 2) + (x - 2) = x + 2 + x - 2 = 2x \] ### Step 3: Calculate A^2, B^2, and AB Next, we calculate \(A^2\), \(B^2\), and \(AB\): - \(A^2 = (x + 2)^2 = x^2 + 4x + 4\) - \(B^2 = (x - 2)^2 = x^2 - 4x + 4\) - \(AB = (x + 2)(x - 2) = x^2 - 4\) ### Step 4: Substitute into the sum of cubes formula Now we substitute these values into the formula: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] Substituting the values we found: \[ A^3 + B^3 = (2x)\left((x^2 + 4x + 4) - (x^2 - 4) + (x^2 - 4x + 4)\right) \] ### Step 5: Simplify the expression inside the parentheses Now simplify the expression inside the parentheses: \[ = (x^2 + 4x + 4) - (x^2 - 4) + (x^2 - 4x + 4) \] This simplifies to: \[ = x^2 + 4x + 4 - x^2 + 4 + x^2 - 4x + 4 \] Combining like terms: \[ = (x^2 - x^2 + x^2) + (4x - 4x) + (4 + 4 + 4) = x^2 + 12 \] ### Step 6: Final expression Now substitute back into the equation: \[ A^3 + B^3 = 2x(x^2 + 12) \] This gives us the final answer: \[ = 2x^3 + 24x \] ### Summary of the steps: 1. Identify \(A\) and \(B\). 2. Calculate \(A + B\). 3. Calculate \(A^2\), \(B^2\), and \(AB\). 4. Substitute into the sum of cubes formula. 5. Simplify the expression inside the parentheses. 6. Write the final expression.
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3E|10 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

The number of irrational roots of the equation (x-1) (x-2) (3x-2) ( 3x +1) =21 is

lim_ (x rarr oo) {(x ^ (2) + 2x + 3) / (2x ^ (2) + x + 5)} ^ ((3x-2) / (3x + 2)) 5. glue: kvec 03x

lim_ (x rarr oo) ((2x-3) ^ (2) (3x + 2) ^ (3)) / ((2x + 1) ^ (5))

2 ((x + 2) / (2x-3))-9 ((2x-3) / (x + 2)) = 3

Solve the inequality (x^(2)-3x+2)(x^(3)-3x^(2))(4-x^(2))>=0

Evaluate int(x^(4)-3x^(2)-3x-2)/(x^(3)-x^(2)-x)dx

(iii) (x+(2)/(x))^(3)+(x-(2)/(x))^(3)

Simplify: (x+(2)/(x))^(3)+(x-(2)/(x))^(3)

For x le 2," solve "x^(3)3^(|x-2|)+3^(x+1) = x^(3)*3^(x-2)+3^(|x-2|+3)