Home
Class 10
MATHS
Prove each of the following identities :...

Prove each of the following identities :
` (i) (1- cos^(2) theta) "cosec"^(2) theta =1 " " (ii) (1+ cot^(2) theta) sin^(2) theta =1 `

Answer

Step by step text solution for Prove each of the following identities : (i) (1- cos^(2) theta) "cosec"^(2) theta =1 " " (ii) (1+ cot^(2) theta) sin^(2) theta =1 by MATHS experts to help you in doubts & scoring excellent marks in Class 10 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13B|15 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13C|40 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

Prove each of the following identities : (i) (sec^(2) theta -1) cot^(2) theta =1 " " (ii) (sec^(2) theta -1) ("cosec"^(2)theta -1) =1 (iii) (1- cos^(2) theta )sec^(2) theta = tan^(2) theta

Prove each of the following identities : (i) cot^(2) theta - (1)/(sin^(2) theta)=-1 " " (ii) tan^(2) theta - (1)/(cos^(2) theta)=-1 (iii) cos^(2) theta + (1)/((1+ cot^(2) theta))=1

Prove each of the following identities : (i) (1- tan^(2) theta)/(1+ tan^(2) theta) = ( cos^(2) theta - sin^(2) theta) (ii) (1- tan^(2) theta)/(cot^(2) -1) = tan^(2) theta

Prove each of the following identities : (i) 1+ (cot^(2) theta)/((1+ "cosec"theta))= "cosec" theta (ii) 1+ (tan^(2) theta)/((1+ sec theta))= sec theta

Prove each of the following identities : ((1+ tan^(2) theta) cot theta)/("cosec"^(2) theta ) = tan theta

Prove each of the following identities : (i) sin^(6) theta + cos^(6)theta = 1- 3 sin^(2) theta cos^(2) theta (ii) sin^(2)theta + cos^(4) theta = cos^(2) theta + sin^(4) theta (iii) "cosec"^(4) theta - "cosec"^(2) theta = cot^(4) theta + cot^(2) theta

Prove each of the following identities : (tan^(2) theta)/((1+ tan^(2) theta)) + (cot^(2) theta)/((1+ cot^(2) theta)) =1

Prove each of the following identities : (i) (1+ cos theta)(1- cos theta)(1+ cot^(2) theta)=1 (ii) "cosec" theta (1+ cos theta)("cosec" theta - cot theta)=1

Prove each of the following identities : (1+ tan^(2) theta)(1+ cot^(2) theta)=(1)/((sin^(2) theta- sin^(4) theta))

Prove that (i) ("cosec"^(2) theta-1 ) tan^(2) theta =1 " " (ii) (sec^(2) theta -1)(1- "cosec"^(2) theta )=-1