Home
Class 10
MATHS
Prove each of the following identities :...

Prove each of the following identities :
`(i) ("cosec"theta + cot theta )/("cosec"theta - cot theta ) = ("cosec" theta + cot theta)^(2) = 1+2cot^(2) theta + 2"cosec" theta cot theta `
` (ii) (sec theta + tan theta ) /( sec theta - tan theta) =(sec theta + tan theta )^(2) = 1+ 2tan^(2) theta + 2 sec theta tan theta `

Text Solution

Verified by Experts

(i) `LHS =(("cosec" theta+cot theta))/(("cosec" theta-cot theta))xx(("cosec" theta+cot theta))/(("cosec" theta+cot theta))=("cosec" theta+cot theta)^(2).`
And, `("cosec" theta+cot theta)^(2)="cosec"^(2)theta+cot^(2)theta+2 "cosec"theta cot theta`
`=(1+cot^(2)theta)+cot^(2)theta+2 "cosec"theta cot theta. `
(ii) `LHS=((sec theta +tan theta))/((sec theta -tan theta))xx((sec theta+tan theta))/((sec theta+tan theta)).`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13B|15 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13C|40 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

Prove each of the following identities : ((1+ tan^(2) theta) cot theta)/("cosec"^(2) theta ) = tan theta

Knowledge Check

  • ( cosec theta - sin theta ) ( sec theta - cos theta ) ( tan theta + cot theta ) =

    A
    `sin theta cos theta`
    B
    `sec theta cosec theta`
    C
    1
    D
    none
  • If (cosec theta - cot theta)=2 , the (cosec theta +cot theta) is equal to

    A
    2
    B
    `1/2`
    C
    1
    D
    `3/2`
  • Similar Questions

    Explore conceptually related problems

    Prove that (i) (1)/(("cosec" theta- cot theta ))=("cosec" theta + cot theta) (ii) ((sec theta - tan theta))/((sec theta + tan theta))=(1+ 2tan^(2) theta - 2 sec theta tan theta)

    Prove each of the following identities : (tan theta)/((1-cot theta)) + (cot theta)/((1- tan theta)) = (1+ sec theta "cosec" theta)

    Prove each of the following identities : (1+ tan theta + cot theta )( sin theta - cos theta ) =((sec theta)/("cosec"^(2) theta ) - ("cosec"theta)/(sec^(2)theta))

    Prove that (i) (sin theta)/((1- cos theta))=("cosec" theta + cot theta) (ii) (1)/((sec theta - tan theta))=(sec theta + tan theta)

    Prove each of the following identities : (i) (tan theta)/((sec theta -1)) + (tan theta)/((sec theta +1)) = 2 "cosec" theta (ii) (cot theta)/(("cosec" theta +1))+ (("cosec" theta +1))/(cot theta ) = 2 sec theta

    Prove each of the following identities : (i) sec theta(1- sin theta)(sec theta + tan theta)=1 (ii) sin theta (1+ tan theta) + cos theta( 1+ cot theta)=( sec theta + "cosec" theta)