Home
Class 10
MATHS
If tan theta =(1)/(sqrt(5)), " write ...

If ` tan theta =(1)/(sqrt(5)), " write the value of " (("cosec"^(2)theta-sec^(2)theta))/(("cosec"^(2)theta+sec^(2)theta)).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. **Given**: \( \tan \theta = \frac{1}{\sqrt{5}} \) We need to find the value of: \[ \frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} \] ### Step 1: Finding \( \csc^2 \theta \) and \( \sec^2 \theta \) Using the identity \( \csc^2 \theta = 1 + \cot^2 \theta \) and \( \sec^2 \theta = 1 + \tan^2 \theta \): - First, we calculate \( \tan^2 \theta \): \[ \tan^2 \theta = \left( \frac{1}{\sqrt{5}} \right)^2 = \frac{1}{5} \] - Now, we find \( \sec^2 \theta \): \[ \sec^2 \theta = 1 + \tan^2 \theta = 1 + \frac{1}{5} = \frac{5}{5} + \frac{1}{5} = \frac{6}{5} \] - Next, we find \( \cot^2 \theta \): \[ \cot \theta = \frac{1}{\tan \theta} = \sqrt{5} \quad \Rightarrow \quad \cot^2 \theta = 5 \] - Now, we find \( \csc^2 \theta \): \[ \csc^2 \theta = 1 + \cot^2 \theta = 1 + 5 = 6 \] ### Step 2: Substituting \( \csc^2 \theta \) and \( \sec^2 \theta \) into the expression Now we substitute \( \csc^2 \theta \) and \( \sec^2 \theta \) into the expression: \[ \frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} = \frac{6 - \frac{6}{5}}{6 + \frac{6}{5}} \] ### Step 3: Simplifying the expression - First, simplify the numerator: \[ 6 - \frac{6}{5} = \frac{30}{5} - \frac{6}{5} = \frac{24}{5} \] - Now, simplify the denominator: \[ 6 + \frac{6}{5} = \frac{30}{5} + \frac{6}{5} = \frac{36}{5} \] ### Step 4: Final computation Now we can substitute these back into the expression: \[ \frac{\frac{24}{5}}{\frac{36}{5}} = \frac{24}{36} = \frac{2}{3} \] Thus, the final answer is: \[ \frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} = \frac{2}{3} \]

To solve the problem, we start with the given information: 1. **Given**: \( \tan \theta = \frac{1}{\sqrt{5}} \) We need to find the value of: \[ \frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|53 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13B|15 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

Given tantheta=1/sqrt3 , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

sec^(2)theta+csc^(2)theta=sec^(2)theta xx cos e^(2)theta

Knowledge Check

  • If tan theta = 1/sqrt7 " then" ((cosec^(2) theta -sec^(2) theta))/((cosec^(2)theta + sec^(2) theta)) is equal to

    A
    `1/2`
    B
    `3/4`
    C
    `5/4`
    D
    2
  • If tantheta=sqrt((1)/(13))and theta is acute , then what is the value of ((cosec^(2)theta-sec^(2)theta))/(cosec^(2)theta+sec^(2)theta)) ?

    A
    `(2)/(3)`
    B
    `(3)/(4)`
    C
    `(5)/(6)`
    D
    `(6)/(7)`
  • The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2) theta + cosec^(4) theta is

    A
    `cot^(4) theta - tan^(4) theta`
    B
    `cot^(2) theta - tan^(2) theta`
    C
    `cot^(4) theta + tan^(4) theta`
    D
    `cos4 theta - tan 4 theta`
  • Similar Questions

    Explore conceptually related problems

    Write the value of (tan^(2)theta-sec^(2)theta)/(cot^(2)theta-"cosec"^(2)theta).

    Prove : cot^(2) theta-tan^(2)theta=cosec^(2)theta-sec^(2)theta

    Prove: cot^(2)theta- tan^(2) theta=cosec^(2)theta-sec^(2)theta .

    sec^2theta/(cosec^(2)theta) =

    The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2)theta + cosec^(4) theta is