Home
Class 11
MATHS
If (n+1)! =12xx(n-1)!, find the value o...

If `(n+1)! =12xx(n-1)!`, find the value of n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((n+1)! = 12 \times (n-1)!\), we can follow these steps: ### Step 1: Rewrite the factorials We know that: \[ (n+1)! = (n+1) \times n \times (n-1)! \] So we can rewrite the equation as: \[ (n+1) \times n \times (n-1)! = 12 \times (n-1)! \] ### Step 2: Cancel out \((n-1)!\) Since \((n-1)!\) is common on both sides of the equation and is not equal to zero for \(n \geq 2\), we can safely divide both sides by \((n-1)!\): \[ (n+1) \times n = 12 \] ### Step 3: Expand the left side Now, we can expand the left side: \[ n^2 + n = 12 \] ### Step 4: Rearrange the equation Rearranging the equation gives us a standard quadratic form: \[ n^2 + n - 12 = 0 \] ### Step 5: Factor the quadratic equation Next, we need to factor the quadratic equation. We are looking for two numbers that multiply to \(-12\) and add up to \(1\). The numbers \(4\) and \(-3\) fit this requirement: \[ (n + 4)(n - 3) = 0 \] ### Step 6: Solve for \(n\) Setting each factor to zero gives us: \[ n + 4 = 0 \quad \Rightarrow \quad n = -4 \quad \text{(not valid since } n \text{ must be positive)} \] \[ n - 3 = 0 \quad \Rightarrow \quad n = 3 \] ### Conclusion Thus, the value of \(n\) is: \[ \boxed{3} \] ---

To solve the equation \((n+1)! = 12 \times (n-1)!\), we can follow these steps: ### Step 1: Rewrite the factorials We know that: \[ (n+1)! = (n+1) \times n \times (n-1)! \] So we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8B|36 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8C|10 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise SOLVED EXAMPLES|30 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

If (n+1)! =12 xx [(n-1)!] , find the value of n.

If (n+3)! =56xx(n+1)! , find the value of n.

If (n+1)! =90 xx(n-1)!, find n .

If (n!)/((2!)xx(n-2)!): (n!)/((4!)xx(n-4)!)=2:1 , find the value of n.

If (n+2)! = 60 xx (n-1)! , find n.

If ^(n)C_(12)=^(n)C_(5), find the value of n

If   f(x ) = n/( n+1) , then find the value of f(n) + 1/f(n)

If the G.M. of a and b is (a^(n)+b^(n))/(a^(n-1)+b^(n-1)) then find the value of n.

If .^(n)C_(12) = .^(n)C_(16) , find the value of n

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, then find the value of n.