Home
Class 11
MATHS
If (n!)/((2!)xx(n-2)!): (n!)/((4!)xx(n-4...

If `(n!)/((2!)xx(n-2)!): (n!)/((4!)xx(n-4)!)=2:1`, find the value of n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{n!}{(2!) \cdot (n-2)!} : \frac{n!}{(4!) \cdot (n-4)!} = 2 : 1 \] ### Step 1: Simplify the Ratios We can rewrite the left-hand side of the equation: \[ \frac{n!}{(2!) \cdot (n-2)!} = \frac{n(n-1)}{2} \] and \[ \frac{n!}{(4!) \cdot (n-4)!} = \frac{n(n-1)(n-2)(n-3)}{24} \] ### Step 2: Set Up the Equation Now, substituting these simplifications back into the ratio gives us: \[ \frac{\frac{n(n-1)}{2}}{\frac{n(n-1)(n-2)(n-3)}{24}} = \frac{2}{1} \] ### Step 3: Cross-Multiply Cross-multiplying gives us: \[ \frac{n(n-1)}{2} \cdot 24 = 2 \cdot n(n-1)(n-2)(n-3) \] ### Step 4: Simplify the Equation This simplifies to: \[ 12n(n-1) = 2n(n-1)(n-2)(n-3) \] Dividing both sides by \(2n(n-1)\) (assuming \(n \neq 0\) and \(n \neq 1\)) gives: \[ 6 = (n-2)(n-3) \] ### Step 5: Expand the Right Side Expanding the right side: \[ n^2 - 5n + 6 = 6 \] ### Step 6: Rearranging the Equation Rearranging gives: \[ n^2 - 5n = 0 \] ### Step 7: Factor the Quadratic Factoring out \(n\): \[ n(n - 5) = 0 \] ### Step 8: Solve for \(n\) Setting each factor to zero gives us: \[ n = 0 \quad \text{or} \quad n = 5 \] Since \(n\) must be a positive integer in the context of factorials, we take: \[ n = 5 \] ### Final Answer Thus, the value of \(n\) is: \[ \boxed{5} \]

To solve the problem, we start with the given equation: \[ \frac{n!}{(2!) \cdot (n-2)!} : \frac{n!}{(4!) \cdot (n-4)!} = 2 : 1 \] ### Step 1: Simplify the Ratios ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8B|36 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8C|10 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise SOLVED EXAMPLES|30 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

If ((2n!))/((3!)xx(2n-3)!): (n!)/((2!)xx(n-2)!)=44:3 , find the value of n.

(i) If (n!)/(2.(n-2)!): (n!)/(4!.(n-4)!) = 2:1 , find the valye of n. (ii) If ((2n)!)/(3!(2n-3)!): (n!)/(2!(n-2)!) = 44:3 , then find the value of n.

If 2^(n-7) xx 5^(n-4)=1250, find the value of n.

If (n+1)! =12 xx [(n-1)!] , find the value of n.

If (n!)/(2!(n-2!)) and (n!)/(4!(n-4!)) are in the ratio 2:1, find the value of n.

if (9^nxx3^2xx3^n-(27)^n)/((3^3)^5xx2^3)=1/(27), find the value of n

If 2^(n-7) xx 5^(n-4)=1250, find the value of n. Hint: 2^(n-4) xx 2^(-3) xx 5^(n-1)=1250 implies frac(2^(n-4) xx 5^(n-4))(2^(3))= 1250 implies (2 xx 5)^(n-4)=(10)^(4).

If 16^(n+1) = 64 xx 4^(-n) , the value of n is

If (n+2)! = 60 xx (n-1)! , find n.

If .^((n^(2)-n))C_(2)=.^((n^(2)-n))C_(4) then find the value of n.