Home
Class 11
MATHS
Proove that (n+2)xx(n!)=(n!)+(n+1)!....

Proove that `(n+2)xx(n!)=(n!)+(n+1)!.`

Text Solution

Verified by Experts

`RHS=(n!)+(n+1)xx(n!)=(n+2)xx(n!)=LHS.`
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8B|36 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8C|10 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise SOLVED EXAMPLES|30 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

Prove that ((2n)!)/(n!) =2^(n) xx{1xx3xx5xx...xx(2n-1)}.

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-1)C_(n)+^(n)C_(2)xx^(2n-2)C_(n)++(-1)^(n)sim nC_(n)^(n)C_(n)=1

For n in N, prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

Prove that 1^(1)xx2^(2)xx3^(3)xx xx n^(n)<=[(2n+1)/3]^(n(n+1)/2),n in N