Home
Class 11
MATHS
Prove that : (i) (n!)/(r!)=n(n-1)(n-2...

Prove that :
(i) ` (n!)/(r!)=n(n-1)(n-2)...(r+1)`
(ii) `(n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!)`
(iii) `(n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)`

Text Solution

Verified by Experts

(i) `RHS =(n(n-1)(n-2)...(r+1)xx(r!))/(r!)=(n!)/(r!).`
(ii) We know that `(n-r+1)! =(n-r+1)*(n-r)!.`
(iii) `LHS=(n!)/((n-r)!*(r-1)!){(1)/(r)+(1)/(n-r+1)}`
`=(n!)/((n-r)!*(r-1)!)*((n+1))/(r(n-r+1))=((n+1)!)/((r!)*(n-r+1)!)=RHS.`
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8B|36 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8C|10 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise SOLVED EXAMPLES|30 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

(ii) (n!)/((n-r)!r!)+(n!)/((n-r+1)!(r-1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)((n!)/((n-r+1)!))=((n!)/((n-r)!))

Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)

Prove that n(n-1)(n-2) ...(n-r+1)=(n!)/((n-r)!).

Prove that n(n-1)(n-2)......(n-r+1)=(n!)/(n-r)!

Prove that .^(n-1)P_(r)+r.^(n-1)P_(r-1)=.^(n)P_(r)