Home
Class 11
MATHS
Using binomial theorem, expand each of t...

Using binomial theorem, expand each of the following:`(root(3)(x)-root(3)(y))^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((\sqrt[3]{x} - \sqrt[3]{y})^6\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify the terms in the binomial expansion The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, we have \(a = \sqrt[3]{x}\), \(b = -\sqrt[3]{y}\), and \(n = 6\). ### Step 2: Write the expansion Using the Binomial Theorem, we can write: \[ (\sqrt[3]{x} - \sqrt[3]{y})^6 = \sum_{k=0}^{6} \binom{6}{k} (\sqrt[3]{x})^{6-k} (-\sqrt[3]{y})^k \] ### Step 3: Calculate each term in the expansion Now we will calculate the terms for \(k = 0\) to \(k = 6\): 1. **For \(k = 0\)**: \[ \binom{6}{0} (\sqrt[3]{x})^6 (-\sqrt[3]{y})^0 = 1 \cdot x^2 \cdot 1 = x^2 \] 2. **For \(k = 1\)**: \[ \binom{6}{1} (\sqrt[3]{x})^5 (-\sqrt[3]{y})^1 = 6 \cdot x^{5/3} \cdot (-y^{1/3}) = -6x^{5/3}y^{1/3} \] 3. **For \(k = 2\)**: \[ \binom{6}{2} (\sqrt[3]{x})^4 (-\sqrt[3]{y})^2 = 15 \cdot x^{4/3} \cdot y^{2/3} = 15x^{4/3}y^{2/3} \] 4. **For \(k = 3\)**: \[ \binom{6}{3} (\sqrt[3]{x})^3 (-\sqrt[3]{y})^3 = 20 \cdot x \cdot (-y) = -20xy \] 5. **For \(k = 4\)**: \[ \binom{6}{4} (\sqrt[3]{x})^2 (-\sqrt[3]{y})^4 = 15 \cdot x^{2/3} \cdot y^{4/3} = 15x^{2/3}y^{4/3} \] 6. **For \(k = 5\)**: \[ \binom{6}{5} (\sqrt[3]{x})^1 (-\sqrt[3]{y})^5 = 6 \cdot x^{1/3} \cdot (-y^{5/3}) = -6x^{1/3}y^{5/3} \] 7. **For \(k = 6\)**: \[ \binom{6}{6} (\sqrt[3]{x})^0 (-\sqrt[3]{y})^6 = 1 \cdot 1 \cdot y^2 = y^2 \] ### Step 4: Combine all the terms Now, we combine all the terms we calculated: \[ (\sqrt[3]{x} - \sqrt[3]{y})^6 = x^2 - 6x^{5/3}y^{1/3} + 15x^{4/3}y^{2/3} - 20xy + 15x^{2/3}y^{4/3} - 6x^{1/3}y^{5/3} + y^2 \] ### Final Answer: \[ (\sqrt[3]{x} - \sqrt[3]{y})^6 = x^2 - 6x^{5/3}y^{1/3} + 15x^{4/3}y^{2/3} - 20xy + 15x^{2/3}y^{4/3} - 6x^{1/3}y^{5/3} + y^2 \]

To expand the expression \((\sqrt[3]{x} - \sqrt[3]{y})^6\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify the terms in the binomial expansion The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, we have \(a = \sqrt[3]{x}\), \(b = -\sqrt[3]{y}\), and \(n = 6\). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, expand each of the following: (2x-3)^(6)

Using binomial theorem, expand each of the following: (3x+2y)^(5)

Using binomial theorem, expand each of the following: (2x-3y)^(4)

Using binomial theorem, expand each of the following: (x-1/y)^(5)

Using binomial theorem, expand each of the following: (1-2x)^(5)

Using binomial theorem, expand each of the following: (sqrt(x)+sqrt(y))^(8)

Using binomial theorem, expand each of the following: ((2x)/3-3/(2x))^(6)

Using binomial theorem, expand each of the following: (x^(2)-2/x)^(7)

Using binomial theorem evaluate each of the following: (96)^(3)

Using binomial theorem, expand each of the following: (1+2x-3x^(2))^(4)

RS AGGARWAL-BINOMIAL THEOREM-EXERCISE 10A
  1. Using binomial theorem, expand each of the following:(x-1/y)^(5)

    Text Solution

    |

  2. Using binomial theorem, expand each of the following:(sqrt(x)+sqrt(y))...

    Text Solution

    |

  3. Using binomial theorem, expand each of the following:(root(3)(x)-root(...

    Text Solution

    |

  4. Using binomial theorem, expand each of the following:(1+2x-3x^(2))^(4)

    Text Solution

    |

  5. Using binomial theorem, expand each of the following:(1+x/2-2/x)^(4),x...

    Text Solution

    |

  6. Using binomial theorem, expand each of the following: (3x^(2)-2ax+3a^(...

    Text Solution

    |

  7. Evalute: (sqrt(2)+1)^(6) + ( sqrt(2) - 1)^(6)

    Text Solution

    |

  8. Evalute: (sqrt(3)+1)^(5) -(sqrt(3)-1)^(5)

    Text Solution

    |

  9. Evalute: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)

    Text Solution

    |

  10. Evalute: (sqrt(3)+sqrt(2))^(6)- (sqrt(3)-sqrt(2))^(6)

    Text Solution

    |

  11. Prove that sum(n)^(r=0) ""^(n)C(r)*3^(r)=4^(n).

    Text Solution

    |

  12. Using binomial theorem, evaluate each of the following: (i)(104)^(4...

    Text Solution

    |

  13. Using binomial theorem, prove that (2^(3n)-7n-1) is divisible by 49, w...

    Text Solution

    |

  14. Prove that (2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2)).

    Text Solution

    |

  15. Find the 7th term in the expansion of ((4x)/5+5/(2x))^(8)

    Text Solution

    |

  16. Find the 9th term in the expansion of (a/b-b/(2a)^(2))^(12).

    Text Solution

    |

  17. Find the 16th term in the expansion of (sqrt(x)-sqrt(y))^(17)

    Text Solution

    |

  18. Find the 13^(t h)term in the expansion of (9x-1/(3sqrt(x)))^(18),x!=0

    Text Solution

    |

  19. If the coefficients of x^7 and x^8 in the expansion of [2 +x/3]^n a...

    Text Solution

    |

  20. The ratio of the coefficient of x^(15) to the term independent of x in...

    Text Solution

    |