Home
Class 11
MATHS
Using binomial theorem, expand each of t...

Using binomial theorem, expand each of the following:`(1+2x-3x^(2))^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((1 + 2x - 3x^2)^4\) using the Binomial Theorem, we can follow these steps: ### Step 1: Identify the Binomial Form We can rewrite the expression in a suitable form for the Binomial Theorem: \[ (1 + (2x - 3x^2))^4 \] Here, we can let \(y = 2x - 3x^2\). ### Step 2: Apply the Binomial Theorem According to the Binomial Theorem, \((a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\). In our case: - \(a = 1\) - \(b = y = 2x - 3x^2\) - \(n = 4\) Thus, we can expand it as: \[ (1 + y)^4 = \sum_{k=0}^{4} \binom{4}{k} (1)^{4-k} (2x - 3x^2)^k \] ### Step 3: Calculate Each Term Now, we will calculate each term for \(k = 0\) to \(k = 4\): 1. **For \(k = 0\)**: \[ \binom{4}{0} (1)^{4} (2x - 3x^2)^{0} = 1 \] 2. **For \(k = 1\)**: \[ \binom{4}{1} (1)^{3} (2x - 3x^2)^{1} = 4(2x - 3x^2) = 8x - 12x^2 \] 3. **For \(k = 2\)**: \[ \binom{4}{2} (1)^{2} (2x - 3x^2)^{2} = 6(2x - 3x^2)^{2} \] Expanding \((2x - 3x^2)^{2}\): \[ (2x - 3x^2)(2x - 3x^2) = 4x^2 - 12x^3 + 9x^4 \] Thus, \[ 6(4x^2 - 12x^3 + 9x^4) = 24x^2 - 72x^3 + 54x^4 \] 4. **For \(k = 3\)**: \[ \binom{4}{3} (1)^{1} (2x - 3x^2)^{3} = 4(2x - 3x^2)^{3} \] Expanding \((2x - 3x^2)^{3}\): \[ (2x - 3x^2)(2x - 3x^2)(2x - 3x^2) = 8x^3 - 36x^4 + 54x^5 - 27x^6 \] Thus, \[ 4(8x^3 - 36x^4 + 54x^5 - 27x^6) = 32x^3 - 144x^4 + 216x^5 - 108x^6 \] 5. **For \(k = 4\)**: \[ \binom{4}{4} (1)^{0} (2x - 3x^2)^{4} = (2x - 3x^2)^{4} \] Expanding \((2x - 3x^2)^{4}\) using the binomial theorem: \[ = 16x^4 - 96x^5 + 216x^6 - 81x^8 \] ### Step 4: Combine All Terms Now, we combine all the terms we calculated: \[ 1 + (8x - 12x^2) + (24x^2 - 72x^3 + 54x^4) + (32x^3 - 144x^4 + 216x^5 - 108x^6) + (16x^4 - 96x^5 + 216x^6 - 81x^8) \] Combining like terms: - Constant term: \(1\) - \(x\) term: \(8x\) - \(x^2\) term: \(-12x^2 + 24x^2 = 12x^2\) - \(x^3\) term: \(-72x^3 + 32x^3 = -40x^3\) - \(x^4\) term: \(54x^4 - 144x^4 + 16x^4 = -74x^4\) - \(x^5\) term: \(216x^5 - 96x^5 = 120x^5\) - \(x^6\) term: \(-108x^6 + 216x^6 = 108x^6\) - \(x^8\) term: \(-81x^8\) Thus, the final expansion is: \[ (1 + 2x - 3x^2)^4 = 81x^8 - 216x^7 + 108x^6 + 120x^5 - 74x^4 - 40x^3 + 12x^2 + 8x + 1 \]

To expand the expression \((1 + 2x - 3x^2)^4\) using the Binomial Theorem, we can follow these steps: ### Step 1: Identify the Binomial Form We can rewrite the expression in a suitable form for the Binomial Theorem: \[ (1 + (2x - 3x^2))^4 \] Here, we can let \(y = 2x - 3x^2\). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, expand each of the following: (2x-3)^(6)

Using binomial theorem, expand each of the following: (1-2x)^(5)

Using binomial theorem, expand each of the following: (2x-3y)^(4)

Using binomial theorem, expand each of the following: (x^(2)-2/x)^(7)

Using binomial theorem, expand each of the following: ((2x)/3-3/(2x))^(6)

Using binomial theorem, expand each of the following: (x-1/y)^(5)

Using binomial theorem, expand each of the following: (3x+2y)^(5)

Using binomial theorem, expand each of the following: (3x^(2)-2ax+3a^(2))^(3)

Using binomial theorem evaluate each of the following: (102)^(5)

RS AGGARWAL-BINOMIAL THEOREM-EXERCISE 10A
  1. Using binomial theorem, expand each of the following:(sqrt(x)+sqrt(y))...

    Text Solution

    |

  2. Using binomial theorem, expand each of the following:(root(3)(x)-root(...

    Text Solution

    |

  3. Using binomial theorem, expand each of the following:(1+2x-3x^(2))^(4)

    Text Solution

    |

  4. Using binomial theorem, expand each of the following:(1+x/2-2/x)^(4),x...

    Text Solution

    |

  5. Using binomial theorem, expand each of the following: (3x^(2)-2ax+3a^(...

    Text Solution

    |

  6. Evalute: (sqrt(2)+1)^(6) + ( sqrt(2) - 1)^(6)

    Text Solution

    |

  7. Evalute: (sqrt(3)+1)^(5) -(sqrt(3)-1)^(5)

    Text Solution

    |

  8. Evalute: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)

    Text Solution

    |

  9. Evalute: (sqrt(3)+sqrt(2))^(6)- (sqrt(3)-sqrt(2))^(6)

    Text Solution

    |

  10. Prove that sum(n)^(r=0) ""^(n)C(r)*3^(r)=4^(n).

    Text Solution

    |

  11. Using binomial theorem, evaluate each of the following: (i)(104)^(4...

    Text Solution

    |

  12. Using binomial theorem, prove that (2^(3n)-7n-1) is divisible by 49, w...

    Text Solution

    |

  13. Prove that (2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2)).

    Text Solution

    |

  14. Find the 7th term in the expansion of ((4x)/5+5/(2x))^(8)

    Text Solution

    |

  15. Find the 9th term in the expansion of (a/b-b/(2a)^(2))^(12).

    Text Solution

    |

  16. Find the 16th term in the expansion of (sqrt(x)-sqrt(y))^(17)

    Text Solution

    |

  17. Find the 13^(t h)term in the expansion of (9x-1/(3sqrt(x)))^(18),x!=0

    Text Solution

    |

  18. If the coefficients of x^7 and x^8 in the expansion of [2 +x/3]^n a...

    Text Solution

    |

  19. The ratio of the coefficient of x^(15) to the term independent of x in...

    Text Solution

    |

  20. Prove that the ratio of the coefficient of x^10 in (1 - x^2)^10 & the ...

    Text Solution

    |