Home
Class 11
MATHS
Using binomial theorem, expand each of t...

Using binomial theorem, expand each of the following:`(1+x/2-2/x)^(4),x!=0`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((1 + \frac{x}{2} - \frac{2}{x})^4\) using the Binomial Theorem, we will follow these steps: ### Step 1: Identify \(a\) and \(b\) We can express the given expression in the form of \((a + b)^n\). Here, we can take: - \(a = 1 + \frac{x}{2}\) - \(b = -\frac{2}{x}\) - \(n = 4\) ### Step 2: Write the Binomial Expansion Formula According to the Binomial Theorem, the expansion of \((a + b)^n\) is given by: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] where \(\binom{n}{k} = \frac{n!}{k!(n-k)!}\). ### Step 3: Apply the Formula Now, we will apply the formula to our expression: \[ (1 + \frac{x}{2} - \frac{2}{x})^4 = \sum_{k=0}^{4} \binom{4}{k} \left(1 + \frac{x}{2}\right)^{4-k} \left(-\frac{2}{x}\right)^k \] ### Step 4: Calculate Each Term We will calculate each term of the expansion for \(k = 0, 1, 2, 3, 4\): 1. **For \(k = 0\)**: \[ \binom{4}{0} (1 + \frac{x}{2})^4 (-\frac{2}{x})^0 = 1 \cdot (1 + \frac{x}{2})^4 = (1 + \frac{x}{2})^4 \] 2. **For \(k = 1\)**: \[ \binom{4}{1} (1 + \frac{x}{2})^3 (-\frac{2}{x})^1 = 4 \cdot (1 + \frac{x}{2})^3 \cdot \left(-\frac{2}{x}\right) = -\frac{8}{x} (1 + \frac{x}{2})^3 \] 3. **For \(k = 2\)**: \[ \binom{4}{2} (1 + \frac{x}{2})^2 (-\frac{2}{x})^2 = 6 \cdot (1 + \frac{x}{2})^2 \cdot \frac{4}{x^2} = \frac{24}{x^2} (1 + \frac{x}{2})^2 \] 4. **For \(k = 3\)**: \[ \binom{4}{3} (1 + \frac{x}{2})^1 (-\frac{2}{x})^3 = 4 \cdot (1 + \frac{x}{2}) \cdot \left(-\frac{8}{x^3}\right) = -\frac{32}{x^3} (1 + \frac{x}{2}) \] 5. **For \(k = 4\)**: \[ \binom{4}{4} (1 + \frac{x}{2})^0 (-\frac{2}{x})^4 = 1 \cdot 1 \cdot \frac{16}{x^4} = \frac{16}{x^4} \] ### Step 5: Combine All Terms Now we combine all the terms: \[ (1 + \frac{x}{2})^4 - \frac{8}{x} (1 + \frac{x}{2})^3 + \frac{24}{x^2} (1 + \frac{x}{2})^2 - \frac{32}{x^3} (1 + \frac{x}{2}) + \frac{16}{x^4} \] ### Step 6: Expand Each Term Next, we will expand \((1 + \frac{x}{2})^n\) for \(n = 4, 3, 2, 1\) using the binomial expansion again. 1. **Expand \((1 + \frac{x}{2})^4\)**: \[ = 1 + 4 \cdot \frac{x}{2} + 6 \cdot \left(\frac{x}{2}\right)^2 + 4 \cdot \left(\frac{x}{2}\right)^3 + \left(\frac{x}{2}\right)^4 = 1 + 2x + \frac{3}{2}x^2 + \frac{1}{2}x^3 + \frac{1}{16}x^4 \] 2. **Expand \((1 + \frac{x}{2})^3\)**: \[ = 1 + 3 \cdot \frac{x}{2} + 3 \cdot \left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^3 = 1 + \frac{3}{2}x + \frac{3}{4}x^2 + \frac{1}{8}x^3 \] 3. **Expand \((1 + \frac{x}{2})^2\)**: \[ = 1 + 2 \cdot \frac{x}{2} + \left(\frac{x}{2}\right)^2 = 1 + x + \frac{1}{4}x^2 \] 4. **Expand \((1 + \frac{x}{2})^1\)**: \[ = 1 + \frac{x}{2} \] ### Step 7: Substitute Back and Simplify Substituting these expansions back into the combined expression and simplifying will give the final result. ### Final Result After substituting and simplifying, we will arrive at the final expanded form of \((1 + \frac{x}{2} - \frac{2}{x})^4\).

To expand the expression \((1 + \frac{x}{2} - \frac{2}{x})^4\) using the Binomial Theorem, we will follow these steps: ### Step 1: Identify \(a\) and \(b\) We can express the given expression in the form of \((a + b)^n\). Here, we can take: - \(a = 1 + \frac{x}{2}\) - \(b = -\frac{2}{x}\) - \(n = 4\) ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, expand each of the following: (x^(2)-2/x)^(7)

Using binomial theorem, expand each of the following: (1-2x)^(5)

Using binomial theorem, expand each of the following: (1+2x-3x^(2))^(4)

Using binomial theorem, expand each of the following: (x-1/y)^(5)

Using binomial theorem, expand each of the following: (2x-3)^(6)

Using binomial theorem, expand each of the following: (2x-3y)^(4)

Using binomial theorem, expand each of the following: (3x+2y)^(5)

Using binomial theorem, expand each of the following: ((2x)/3-3/(2x))^(6)

Using binomial theorem, expand each of the following: (3x^(2)-2ax+3a^(2))^(3)

Using binomial theorem, expand each of the following: (sqrt(x)+sqrt(y))^(8)

RS AGGARWAL-BINOMIAL THEOREM-EXERCISE 10A
  1. Using binomial theorem, expand each of the following:(root(3)(x)-root(...

    Text Solution

    |

  2. Using binomial theorem, expand each of the following:(1+2x-3x^(2))^(4)

    Text Solution

    |

  3. Using binomial theorem, expand each of the following:(1+x/2-2/x)^(4),x...

    Text Solution

    |

  4. Using binomial theorem, expand each of the following: (3x^(2)-2ax+3a^(...

    Text Solution

    |

  5. Evalute: (sqrt(2)+1)^(6) + ( sqrt(2) - 1)^(6)

    Text Solution

    |

  6. Evalute: (sqrt(3)+1)^(5) -(sqrt(3)-1)^(5)

    Text Solution

    |

  7. Evalute: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)

    Text Solution

    |

  8. Evalute: (sqrt(3)+sqrt(2))^(6)- (sqrt(3)-sqrt(2))^(6)

    Text Solution

    |

  9. Prove that sum(n)^(r=0) ""^(n)C(r)*3^(r)=4^(n).

    Text Solution

    |

  10. Using binomial theorem, evaluate each of the following: (i)(104)^(4...

    Text Solution

    |

  11. Using binomial theorem, prove that (2^(3n)-7n-1) is divisible by 49, w...

    Text Solution

    |

  12. Prove that (2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2)).

    Text Solution

    |

  13. Find the 7th term in the expansion of ((4x)/5+5/(2x))^(8)

    Text Solution

    |

  14. Find the 9th term in the expansion of (a/b-b/(2a)^(2))^(12).

    Text Solution

    |

  15. Find the 16th term in the expansion of (sqrt(x)-sqrt(y))^(17)

    Text Solution

    |

  16. Find the 13^(t h)term in the expansion of (9x-1/(3sqrt(x)))^(18),x!=0

    Text Solution

    |

  17. If the coefficients of x^7 and x^8 in the expansion of [2 +x/3]^n a...

    Text Solution

    |

  18. The ratio of the coefficient of x^(15) to the term independent of x in...

    Text Solution

    |

  19. Prove that the ratio of the coefficient of x^10 in (1 - x^2)^10 & the ...

    Text Solution

    |

  20. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |