Home
Class 11
MATHS
Evalute: (sqrt(2)+1)^(6) + ( sqrt(2) - 1...

Evalute: `(sqrt(2)+1)^(6) + ( sqrt(2) - 1)^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\sqrt{2}+1)^{6} + (\sqrt{2}-1)^{6}\), we can use the Binomial Theorem and some algebraic manipulations. Let's break it down step by step. ### Step 1: Rewrite the Expression We can express the given terms as: \[ (\sqrt{2}+1)^{6} + (\sqrt{2}-1)^{6} \] This can be rewritten using the property of exponents: \[ = \left((\sqrt{2}+1)^{2}\right)^{3} + \left((\sqrt{2}-1)^{2}\right)^{3} \] ### Step 2: Calculate \((\sqrt{2}+1)^{2}\) and \((\sqrt{2}-1)^{2}\) Now we calculate each square: \[ (\sqrt{2}+1)^{2} = (\sqrt{2})^{2} + 2 \cdot \sqrt{2} \cdot 1 + 1^{2} = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2} \] \[ (\sqrt{2}-1)^{2} = (\sqrt{2})^{2} - 2 \cdot \sqrt{2} \cdot 1 + 1^{2} = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} \] ### Step 3: Substitute Back into the Expression Now substitute these results back into the expression: \[ = (3 + 2\sqrt{2})^{3} + (3 - 2\sqrt{2})^{3} \] ### Step 4: Use the Sum of Cubes Formula We can use the formula for the sum of cubes: \[ a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2}) \] Here, let \(a = 3 + 2\sqrt{2}\) and \(b = 3 - 2\sqrt{2}\). First, calculate \(a + b\): \[ a + b = (3 + 2\sqrt{2}) + (3 - 2\sqrt{2}) = 6 \] ### Step 5: Calculate \(a^{2}\) and \(b^{2}\) Next, we calculate \(a^{2}\) and \(b^{2}\): \[ a^{2} = (3 + 2\sqrt{2})^{2} = 9 + 12\sqrt{2} + 8 = 17 + 12\sqrt{2} \] \[ b^{2} = (3 - 2\sqrt{2})^{2} = 9 - 12\sqrt{2} + 8 = 17 - 12\sqrt{2} \] ### Step 6: Calculate \(ab\) Now calculate \(ab\): \[ ab = (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 9 - 8 = 1 \] ### Step 7: Substitute into the Sum of Cubes Formula Now substitute these values back into the sum of cubes formula: \[ a^{3} + b^{3} = (6)((17 + 12\sqrt{2}) + (17 - 12\sqrt{2}) - 1) \] \[ = 6(34 - 1) = 6 \times 33 = 198 \] ### Final Answer Thus, the value of \((\sqrt{2}+1)^{6} + (\sqrt{2}-1)^{6}\) is: \[ \boxed{198} \]

To evaluate the expression \((\sqrt{2}+1)^{6} + (\sqrt{2}-1)^{6}\), we can use the Binomial Theorem and some algebraic manipulations. Let's break it down step by step. ### Step 1: Rewrite the Expression We can express the given terms as: \[ (\sqrt{2}+1)^{6} + (\sqrt{2}-1)^{6} \] This can be rewritten using the property of exponents: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos

Similar Questions

Explore conceptually related problems

Find (x+1)^(6)+(x-1)^(6)* hence,or otherwise evaluate (sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)

Find quad (x+1)^(6)+(x-1)^(6). Hence or otherwise evaluate (sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)

Find the value of (sqrt(2)+1)^(6)-(sqrt(2)-1)^(6)

Expand (a+b)^(6)-(a-b)^(6). Hence find the value of (sqrt(2)+1)^(6)-(sqrt(2)-1)^(6)

Evalute: (sqrt(3)+1)^(5) -(sqrt(3)-1)^(5)

Evaluate the following: (sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)

Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6) (ii) (sqrt(5)+sqrt(2))^(4)-(sqrt(5)-sqrt(2))^(4)

Show that (sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)=198

(sqrt(2) + 1)^(6) - (sqrt(2) -1)^(6) is equal to

RS AGGARWAL-BINOMIAL THEOREM-EXERCISE 10A
  1. Using binomial theorem, expand each of the following:(1+x/2-2/x)^(4),x...

    Text Solution

    |

  2. Using binomial theorem, expand each of the following: (3x^(2)-2ax+3a^(...

    Text Solution

    |

  3. Evalute: (sqrt(2)+1)^(6) + ( sqrt(2) - 1)^(6)

    Text Solution

    |

  4. Evalute: (sqrt(3)+1)^(5) -(sqrt(3)-1)^(5)

    Text Solution

    |

  5. Evalute: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)

    Text Solution

    |

  6. Evalute: (sqrt(3)+sqrt(2))^(6)- (sqrt(3)-sqrt(2))^(6)

    Text Solution

    |

  7. Prove that sum(n)^(r=0) ""^(n)C(r)*3^(r)=4^(n).

    Text Solution

    |

  8. Using binomial theorem, evaluate each of the following: (i)(104)^(4...

    Text Solution

    |

  9. Using binomial theorem, prove that (2^(3n)-7n-1) is divisible by 49, w...

    Text Solution

    |

  10. Prove that (2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2)).

    Text Solution

    |

  11. Find the 7th term in the expansion of ((4x)/5+5/(2x))^(8)

    Text Solution

    |

  12. Find the 9th term in the expansion of (a/b-b/(2a)^(2))^(12).

    Text Solution

    |

  13. Find the 16th term in the expansion of (sqrt(x)-sqrt(y))^(17)

    Text Solution

    |

  14. Find the 13^(t h)term in the expansion of (9x-1/(3sqrt(x)))^(18),x!=0

    Text Solution

    |

  15. If the coefficients of x^7 and x^8 in the expansion of [2 +x/3]^n a...

    Text Solution

    |

  16. The ratio of the coefficient of x^(15) to the term independent of x in...

    Text Solution

    |

  17. Prove that the ratio of the coefficient of x^10 in (1 - x^2)^10 & the ...

    Text Solution

    |

  18. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  19. Find the coefficient of :\ x\ in the expansion of (1-3x+7x^2)(1-x)^(1...

    Text Solution

    |

  20. Find the coefficient of (i) x^(5)" in the expansion of "(x+3)^(8) (...

    Text Solution

    |