Home
Class 11
MATHS
Evalute: (sqrt(3)+1)^(5) -(sqrt(3)-1)^(...

Evalute: ` (sqrt(3)+1)^(5) -(sqrt(3)-1)^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\sqrt{3}+1)^{5} - (\sqrt{3}-1)^{5}\), we can use the Binomial Theorem. ### Step-by-Step Solution: 1. **Apply the Binomial Theorem**: The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] For our expression, we will expand both \((\sqrt{3}+1)^{5}\) and \((\sqrt{3}-1)^{5}\). 2. **Expand \((\sqrt{3}+1)^{5}\)**: Using the Binomial Theorem: \[ (\sqrt{3}+1)^{5} = \sum_{k=0}^{5} \binom{5}{k} (\sqrt{3})^{5-k} (1)^{k} \] This gives us: \[ = \binom{5}{0} (\sqrt{3})^{5} + \binom{5}{1} (\sqrt{3})^{4} + \binom{5}{2} (\sqrt{3})^{3} + \binom{5}{3} (\sqrt{3})^{2} + \binom{5}{4} (\sqrt{3})^{1} + \binom{5}{5} (1)^{5} \] Simplifying, we get: \[ = 3\sqrt{3} + 5 \cdot 3^{2} + 10 \cdot 3^{3/2} + 10 \cdot 3 + 5 \cdot \sqrt{3} + 1 \] 3. **Expand \((\sqrt{3}-1)^{5}\)**: Similarly, we expand \((\sqrt{3}-1)^{5}\): \[ (\sqrt{3}-1)^{5} = \sum_{k=0}^{5} \binom{5}{k} (\sqrt{3})^{5-k} (-1)^{k} \] This gives us: \[ = \binom{5}{0} (\sqrt{3})^{5} - \binom{5}{1} (\sqrt{3})^{4} + \binom{5}{2} (\sqrt{3})^{3} - \binom{5}{3} (\sqrt{3})^{2} + \binom{5}{4} (\sqrt{3})^{1} - \binom{5}{5} (1)^{5} \] Simplifying, we get: \[ = 3\sqrt{3} - 5 \cdot 3^{2} + 10 \cdot 3^{3/2} - 10 \cdot 3 + 5 \cdot \sqrt{3} - 1 \] 4. **Combine the Results**: Now we can subtract the two expansions: \[ (\sqrt{3}+1)^{5} - (\sqrt{3}-1)^{5} \] Notice that all even-powered terms will cancel out, and we will be left with: \[ = 2 \left( 5 \cdot 3^{2} + 10 \cdot 3^{3/2} + 5 \cdot \sqrt{3} + 1 \right) \] 5. **Calculate the Result**: Now we calculate the coefficients: \[ = 2 \left( 5 \cdot 9 + 10 \cdot 3\sqrt{3} + 5\sqrt{3} + 1 \right) \] \[ = 2 \left( 45 + 10\sqrt{3} + 5\sqrt{3} + 1 \right) \] \[ = 2 \left( 46 + 15\sqrt{3} \right) \] \[ = 92 + 30\sqrt{3} \] ### Final Answer: \[ (\sqrt{3}+1)^{5} - (\sqrt{3}-1)^{5} = 92 + 30\sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos

Similar Questions

Explore conceptually related problems

Evalute: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)

Evaluate the following: (sqrt(3)+1)^(5)-(sqrt(3)-1)^(5)

(3)/(sqrt(3)+1)+(5)/(sqrt(3)-1)

Evalute: (sqrt(2)+1)^(6) + ( sqrt(2) - 1)^(6)

Find the value of (1)/(1+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+...+(1)/(sqrt(23)+sqrt(25))

(1)/(4sqrt(3)-3sqrt(5))

If sqrt(5)=2.236 and sqrt(6)=2.449, then the value of (1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3)) is

What is the value (sqrt(5)-sqrt(3))/(sqrt(5) + sqrt(3)) - (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) ?

RS AGGARWAL-BINOMIAL THEOREM-EXERCISE 10A
  1. Using binomial theorem, expand each of the following: (3x^(2)-2ax+3a^(...

    Text Solution

    |

  2. Evalute: (sqrt(2)+1)^(6) + ( sqrt(2) - 1)^(6)

    Text Solution

    |

  3. Evalute: (sqrt(3)+1)^(5) -(sqrt(3)-1)^(5)

    Text Solution

    |

  4. Evalute: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)

    Text Solution

    |

  5. Evalute: (sqrt(3)+sqrt(2))^(6)- (sqrt(3)-sqrt(2))^(6)

    Text Solution

    |

  6. Prove that sum(n)^(r=0) ""^(n)C(r)*3^(r)=4^(n).

    Text Solution

    |

  7. Using binomial theorem, evaluate each of the following: (i)(104)^(4...

    Text Solution

    |

  8. Using binomial theorem, prove that (2^(3n)-7n-1) is divisible by 49, w...

    Text Solution

    |

  9. Prove that (2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2)).

    Text Solution

    |

  10. Find the 7th term in the expansion of ((4x)/5+5/(2x))^(8)

    Text Solution

    |

  11. Find the 9th term in the expansion of (a/b-b/(2a)^(2))^(12).

    Text Solution

    |

  12. Find the 16th term in the expansion of (sqrt(x)-sqrt(y))^(17)

    Text Solution

    |

  13. Find the 13^(t h)term in the expansion of (9x-1/(3sqrt(x)))^(18),x!=0

    Text Solution

    |

  14. If the coefficients of x^7 and x^8 in the expansion of [2 +x/3]^n a...

    Text Solution

    |

  15. The ratio of the coefficient of x^(15) to the term independent of x in...

    Text Solution

    |

  16. Prove that the ratio of the coefficient of x^10 in (1 - x^2)^10 & the ...

    Text Solution

    |

  17. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  18. Find the coefficient of :\ x\ in the expansion of (1-3x+7x^2)(1-x)^(1...

    Text Solution

    |

  19. Find the coefficient of (i) x^(5)" in the expansion of "(x+3)^(8) (...

    Text Solution

    |

  20. Show that the term containing to does not exist in the expansion of (3...

    Text Solution

    |