Home
Class 11
MATHS
Evalute: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)...

Evalute: `(2+sqrt(3))^(7)+(2-sqrt(3))^(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((2+\sqrt{3})^{7} + (2-\sqrt{3})^{7}\), we can use the Binomial Theorem. The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] ### Step-by-Step Solution: 1. **Apply the Binomial Theorem**: We will first expand \((2+\sqrt{3})^{7}\) and \((2-\sqrt{3})^{7}\) using the Binomial Theorem. \[ (2+\sqrt{3})^{7} = \sum_{k=0}^{7} \binom{7}{k} 2^{7-k} (\sqrt{3})^k \] \[ (2-\sqrt{3})^{7} = \sum_{k=0}^{7} \binom{7}{k} 2^{7-k} (-\sqrt{3})^k \] 2. **Combine the Two Expansions**: Now we add these two expansions together: \[ (2+\sqrt{3})^{7} + (2-\sqrt{3})^{7} = \sum_{k=0}^{7} \binom{7}{k} 2^{7-k} (\sqrt{3})^k + \sum_{k=0}^{7} \binom{7}{k} 2^{7-k} (-\sqrt{3})^k \] Notice that when \(k\) is odd, the terms will cancel out because one will be positive and the other negative. When \(k\) is even, the terms will add up. 3. **Identify Even Terms**: We will only consider the even \(k\) terms from the expansion: \[ = \sum_{k \text{ even}} \binom{7}{k} 2^{7-k} (\sqrt{3})^k + \sum_{k \text{ even}} \binom{7}{k} 2^{7-k} (-\sqrt{3})^k \] This simplifies to: \[ = 2 \sum_{k \text{ even}} \binom{7}{k} 2^{7-k} (\sqrt{3})^k \] 4. **Calculate the Even Terms**: The even values of \(k\) are \(0, 2, 4, 6\). We will calculate these terms: - For \(k=0\): \[ \binom{7}{0} 2^{7} (\sqrt{3})^{0} = 1 \cdot 128 \cdot 1 = 128 \] - For \(k=2\): \[ \binom{7}{2} 2^{5} (\sqrt{3})^{2} = 21 \cdot 32 \cdot 3 = 2016 \] - For \(k=4\): \[ \binom{7}{4} 2^{3} (\sqrt{3})^{4} = 35 \cdot 8 \cdot 9 = 2520 \] - For \(k=6\): \[ \binom{7}{6} 2^{1} (\sqrt{3})^{6} = 7 \cdot 2 \cdot 27 = 378 \] 5. **Sum the Even Terms**: Now we sum these contributions: \[ 128 + 2016 + 2520 + 378 = 5042 \] 6. **Final Calculation**: Since we have \(2\) times the sum of the even terms: \[ (2+\sqrt{3})^{7} + (2-\sqrt{3})^{7} = 2 \cdot 5042 = 10084 \] ### Final Answer: \[ (2+\sqrt{3})^{7} + (2-\sqrt{3})^{7} = 10084 \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)

(2sqrt(7))/(sqrt(5)-sqrt(3))

Evalute: (sqrt(3)+sqrt(2))^(6)- (sqrt(3)-sqrt(2))^(6)

Evaluate : ( sqrt(3) + sqrt(7) ) times ( sqrt(3) + sqrt(7) )

Evaluate : ( sqrt(7) + sqrt(2) ) times ( sqrt(3) + sqrt(8) )

(3+sqrt(7))/(3-sqrt(7))

tan^(2)((1)/(2)sin^(-1)(2)/(3))= (A) (7+3sqrt(3))/(2) (B) (7-5sqrt(3))/(2) (C) (7-3sqrt(5))/(2) (D) (7+5sqrt(3))/(2)

Evaluate (sqrt(5)-sqrt(3))/(sqrt(2)+sqrt(7))

(3)/(7+sqrt(2))=

RS AGGARWAL-BINOMIAL THEOREM-EXERCISE 10A
  1. Evalute: (sqrt(2)+1)^(6) + ( sqrt(2) - 1)^(6)

    Text Solution

    |

  2. Evalute: (sqrt(3)+1)^(5) -(sqrt(3)-1)^(5)

    Text Solution

    |

  3. Evalute: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)

    Text Solution

    |

  4. Evalute: (sqrt(3)+sqrt(2))^(6)- (sqrt(3)-sqrt(2))^(6)

    Text Solution

    |

  5. Prove that sum(n)^(r=0) ""^(n)C(r)*3^(r)=4^(n).

    Text Solution

    |

  6. Using binomial theorem, evaluate each of the following: (i)(104)^(4...

    Text Solution

    |

  7. Using binomial theorem, prove that (2^(3n)-7n-1) is divisible by 49, w...

    Text Solution

    |

  8. Prove that (2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2)).

    Text Solution

    |

  9. Find the 7th term in the expansion of ((4x)/5+5/(2x))^(8)

    Text Solution

    |

  10. Find the 9th term in the expansion of (a/b-b/(2a)^(2))^(12).

    Text Solution

    |

  11. Find the 16th term in the expansion of (sqrt(x)-sqrt(y))^(17)

    Text Solution

    |

  12. Find the 13^(t h)term in the expansion of (9x-1/(3sqrt(x)))^(18),x!=0

    Text Solution

    |

  13. If the coefficients of x^7 and x^8 in the expansion of [2 +x/3]^n a...

    Text Solution

    |

  14. The ratio of the coefficient of x^(15) to the term independent of x in...

    Text Solution

    |

  15. Prove that the ratio of the coefficient of x^10 in (1 - x^2)^10 & the ...

    Text Solution

    |

  16. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  17. Find the coefficient of :\ x\ in the expansion of (1-3x+7x^2)(1-x)^(1...

    Text Solution

    |

  18. Find the coefficient of (i) x^(5)" in the expansion of "(x+3)^(8) (...

    Text Solution

    |

  19. Show that the term containing to does not exist in the expansion of (3...

    Text Solution

    |

  20. Does the expansion of (2x^2-1/x)^(20) contain any term involving x^9?

    Text Solution

    |