Home
Class 11
MATHS
Evalute: (sqrt(3)+sqrt(2))^(6)- (sqrt(3)...

Evalute: `(sqrt(3)+sqrt(2))^(6)- (sqrt(3)-sqrt(2))^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6\), we can use the Binomial Theorem and some algebraic identities. ### Step-by-Step Solution: 1. **Identify the Terms**: Let \( a = \sqrt{3} \) and \( b = \sqrt{2} \). We need to evaluate \( (a + b)^6 - (a - b)^6 \). 2. **Apply the Binomial Theorem**: According to the Binomial Theorem: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] \[ (a - b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} (-b)^k \] For \( n = 6 \): \[ (a + b)^6 = \sum_{k=0}^{6} \binom{6}{k} a^{6-k} b^k \] \[ (a - b)^6 = \sum_{k=0}^{6} \binom{6}{k} a^{6-k} (-b)^k \] 3. **Subtract the Two Expansions**: When we subtract these two expansions: \[ (a + b)^6 - (a - b)^6 = \sum_{k=0}^{6} \binom{6}{k} a^{6-k} b^k - \sum_{k=0}^{6} \binom{6}{k} a^{6-k} (-b)^k \] Notice that when \( k \) is even, the terms cancel out, and when \( k \) is odd, they double: \[ = 2 \sum_{k \text{ odd}} \binom{6}{k} a^{6-k} b^k \] 4. **Calculate the Odd Terms**: The odd values of \( k \) from 0 to 6 are 1, 3, and 5: - For \( k = 1 \): \[ 2 \binom{6}{1} a^{5} b^{1} = 2 \cdot 6 \cdot (\sqrt{3})^5 \cdot \sqrt{2} = 12 \cdot 3^{2.5} \cdot \sqrt{2} = 12 \cdot 9\sqrt{3} \cdot \sqrt{2} = 108\sqrt{6} \] - For \( k = 3 \): \[ 2 \binom{6}{3} a^{3} b^{3} = 2 \cdot 20 \cdot (\sqrt{3})^3 \cdot (\sqrt{2})^3 = 40 \cdot 3^{1.5} \cdot 2^{1.5} = 40 \cdot 3\sqrt{3} \cdot 2\sqrt{2} = 240\sqrt{6} \] - For \( k = 5 \): \[ 2 \binom{6}{5} a^{1} b^{5} = 2 \cdot 6 \cdot \sqrt{3} \cdot (\sqrt{2})^5 = 12 \cdot \sqrt{3} \cdot 4\sqrt{2} = 48\sqrt{6} \] 5. **Combine the Results**: Now, we add these contributions: \[ 108\sqrt{6} + 240\sqrt{6} + 48\sqrt{6} = 396\sqrt{6} \] ### Final Answer: \[ (\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6 = 396\sqrt{6} \]

To evaluate the expression \((\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6\), we can use the Binomial Theorem and some algebraic identities. ### Step-by-Step Solution: 1. **Identify the Terms**: Let \( a = \sqrt{3} \) and \( b = \sqrt{2} \). We need to evaluate \( (a + b)^6 - (a - b)^6 \). 2. **Apply the Binomial Theorem**: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • BINOMIAL THEOREM

    RS AGGARWAL|Exercise EXERCISE 10B|16 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate (sqrt(3)+sqrt(2))^(6)-(sqrt(3)-sqrt(2))^(6)

Evaluate: (sqrt(3)+sqrt(2))^6+(sqrt(3)+sqrt(2))^6

Evaluate the following: (sqrt(3)+sqrt(2))^(6)-(sqrt(3)-sqrt(2))^(6)

(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))=a+b sqrt(6)

Evaluate: (sqrt(3)+sqrt(5))/(sqrt(6)+sqrt(2))

Evaluate : sqrt(6)/( sqrt(2) + sqrt(3) )

Evaluate : ( sqrt(3) - sqrt(6) ) / ( sqrt(3) + sqrt(6))

Evaluate : ( sqrt(3) - sqrt(6) ) / ( sqrt(3) + sqrt(6))

Evaluate : ( sqrt(3) - sqrt(6) ) / ( sqrt(3) + sqrt(6))

Evaluate (sqrt(6)+sqrt(3))/(sqrt(6).sqrt(3))

RS AGGARWAL-BINOMIAL THEOREM-EXERCISE 10A
  1. Evalute: (sqrt(3)+1)^(5) -(sqrt(3)-1)^(5)

    Text Solution

    |

  2. Evalute: (2+sqrt(3))^(7)+(2-sqrt(3))^(7)

    Text Solution

    |

  3. Evalute: (sqrt(3)+sqrt(2))^(6)- (sqrt(3)-sqrt(2))^(6)

    Text Solution

    |

  4. Prove that sum(n)^(r=0) ""^(n)C(r)*3^(r)=4^(n).

    Text Solution

    |

  5. Using binomial theorem, evaluate each of the following: (i)(104)^(4...

    Text Solution

    |

  6. Using binomial theorem, prove that (2^(3n)-7n-1) is divisible by 49, w...

    Text Solution

    |

  7. Prove that (2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2)).

    Text Solution

    |

  8. Find the 7th term in the expansion of ((4x)/5+5/(2x))^(8)

    Text Solution

    |

  9. Find the 9th term in the expansion of (a/b-b/(2a)^(2))^(12).

    Text Solution

    |

  10. Find the 16th term in the expansion of (sqrt(x)-sqrt(y))^(17)

    Text Solution

    |

  11. Find the 13^(t h)term in the expansion of (9x-1/(3sqrt(x)))^(18),x!=0

    Text Solution

    |

  12. If the coefficients of x^7 and x^8 in the expansion of [2 +x/3]^n a...

    Text Solution

    |

  13. The ratio of the coefficient of x^(15) to the term independent of x in...

    Text Solution

    |

  14. Prove that the ratio of the coefficient of x^10 in (1 - x^2)^10 & the ...

    Text Solution

    |

  15. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  16. Find the coefficient of :\ x\ in the expansion of (1-3x+7x^2)(1-x)^(1...

    Text Solution

    |

  17. Find the coefficient of (i) x^(5)" in the expansion of "(x+3)^(8) (...

    Text Solution

    |

  18. Show that the term containing to does not exist in the expansion of (3...

    Text Solution

    |

  19. Does the expansion of (2x^2-1/x)^(20) contain any term involving x^9?

    Text Solution

    |

  20. Show that the expansion of (x^2+1/x)^1 does not contain any term invol...

    Text Solution

    |